67 research outputs found

    Cooperative catalysis by silica-supported organic functional groups

    Get PDF
    Hybrid inorganic–organic materials comprising organic functional groups tethered from silica surfaces are versatile, heterogeneous catalysts. Recent advances have led to the preparation of silica materials containing multiple, different functional groups that can show cooperative catalysis; that is, these functional groups can act together to provide catalytic activity and selectivity superior to what can be obtained from either monofunctional materials or homogeneous catalysts. This tutorial review discusses cooperative catalysis of silica-based catalytic materials, focusing on the cooperative action of acid–base, acid–thiol, amine–urea, and imidazole–alcohol–carboxylate groups. Particular attention is given to the effect of the spatial arrangement of these organic groups and recent developments in the spatial organization of multiple groups on the silica surface

    Design of New Multifunctional Materials

    Get PDF
    Research in areas of science and technology critical to society, such as energy, medicine, electronics, protective equipment, and consumer goods relies on the ability to create new materials with desirable properties. The diversity in the properties of these materials is enormous. An important factor in the quest for developing exciting new materials is the ability to use synthetic chemistry to prepare new materials starting from a molecular point of view. It is this approach that I use in this work. I have used principles of synthetic organic chemistry to guide the molecular design of materials that contain a variety of functionalities. This thesis describes three types of designed functional materials. First, new heterogeneous catalysts have been prepared that incorporate two organic functional groups in a manner that allows for cooperativity between them in catalyzing organic reactions, giving increases in reaction rates and selectivities. In particular, thiol/sulfonic acid bi-functional mesoporous materials have been prepared that give significant enhancements in reactivity and selectivity towards bisphenol A synthesis. These enhancements arise from interactions between thiol and sulfonic acid sites due to their proximity on the surface of the catalyst. Acid-base bi-functional materials have also been synthesized that exhibit excellent reactivity in the aldol condensation between acetone and 4-nitrobenzaldehyde. These catalysts are particularly important as the acid and base groups are mutually incompatible in solution and provide reactivity not achievable without immobilization on the surface of solids. Second, a method for incorporating traceable and quantifiable labels onto cyclodextrins and cyclodextrin containing polymers has been designed that utilizes the reactivity between the primary alcohols on cyclodextrins and ethylene oxide gas, and allows the cyclodextrins to be labeled for use in animal biodistribution studies. Third, polymers bearing aromatic disulfide groups have been prepared that can be degraded through a dual-trigger mechanism requiring simultaneous photochemical and hydrogen peroxide activation.</p

    Organized Surface Functional Groups: Cooperative Catalysis via Thiol/Sulfonic Acid Pairing

    Get PDF
    The synthesis and characterization of heterogeneous catalysts containing surfaces functionalized with discrete pairs of sulfonic acid and thiol groups are reported. A catalyst having acid and thiol groups separated by three carbon atoms is ca. 3 times more active than a material containing randomly distributed acid and thiol groups in the condensation of acetone and phenol to bisphenol A and 14 times more active in the condensation of cyclohexanone and phenol to bisphenol Z. Increasing the acid/thiol distance in the paired materials decreases both the activity and selectivity. This work clearly reveals the importance of nanoscale organization of two disparate functional groups on the surface of heterogeneous catalysts

    Structure−Function Correlation of Chloroquine and Analogues as Transgene Expression Enhancers in Nonviral Gene Delivery

    Get PDF
    To understand how chloroquine (CQ) enhances transgene expression in polycation-based, nonviral gene delivery systems, a number of CQ analogues with variations in the aliphatic amino side chain or in the aromatic ring are synthesized and investigated. Our studies indicate that the aliphatic amino moiety of CQ is essential to provide increased gene expression. Further, the enhancements are more dramatically affected by changes to the aromatic ring and are positively correlated to the strength of intercalation between DNA and the CQ analogues. Quinacrine (QC), a CQ analogue with a fused acridinyl structure that can strongly intercalate DNA, enhances transfection similarly to CQ at a concentration 10 times lower, while N^4-(4-pyridinyl)-N^1,N^1-diethyl-1,4-pentanediamine (CP), a CQ analogue that has a weakly intercalating pyridinyl ring, shows no effect on gene expression. Subtle change on the 7-substituent of the chloroquine aromatic structure can also greatly affect the ability of the CQ analogues to enhance transgene expression. Transfection in the presence of N^4-(7-trifluoromethyl-4-quinolinyl)-N^1,N^1-diethyl-1,4-pentanediamin e (CQ7a) shows expression efficiency 10 times higher than in the presence of CQ at same concentration, while transfection in the presence of N^4-(4-quinolinyl)-N^1,N^1-diethyl-1,4-pentanediamine (CQ7b) does not reveal any enhancing effects on expression. Through a number of comparative studies with CQ and its analogues, we conclude that there are at least three mechanistic features of CQ that lead to the enhancement in gene expression:  (i) pH buffering in endocytic vesicles, (ii) displacement of polycations from the nucleic acids in polyplexes, and (iii) alteration of the biophysical properties of the released nucleic acid

    A Solvent-Free Method for Isotopically or Radioactively Labeling Cyclodextrins and Cyclodextrin-Containing Polymers

    Get PDF
    A method for installing a distinguishable label onto cyclodextrins or cyclodextrin-containing polymers is reported. Cyclodextrins (CD) and cyclodextrin-containing polymers are exposed to labeled (^2H or ^(14)C) ethylene oxide (EO) vapor and the alcohol groups on the CD ring open the EO to give ether-linked labeled methylenes and a terminal alcohol. This method provides for the incorporation of an easily tracked and quantified label without the use of solvents or purification steps. The method can be generalized for use with materials that contain nucleophiles other than alcohols, e.g., amines

    A Solvent-Free Method for Isotopically or Radioactively Labeling Cyclodextrins and Cyclodextrin-Containing Polymers

    Get PDF
    A method for installing a distinguishable label onto cyclodextrins or cyclodextrin-containing polymers is reported. Cyclodextrins (CD) and cyclodextrin-containing polymers are exposed to labeled (^2H or ^(14)C) ethylene oxide (EO) vapor and the alcohol groups on the CD ring open the EO to give ether-linked labeled methylenes and a terminal alcohol. This method provides for the incorporation of an easily tracked and quantified label without the use of solvents or purification steps. The method can be generalized for use with materials that contain nucleophiles other than alcohols, e.g., amines

    Chylous ascites following robotic lymph node dissection on a patient with metastatic cervical carcinoma

    Get PDF
    Chylous ascites is an uncommon postoperative complication of gynecological surgery. We report a case of chylous ascites following a robotic lymph node dissection for a cervical carcinoma. A 38-year-old woman with IB2 cervical adenocarcinoma with a palpable 3 cm left external iliac lymph node was taken to the operating room for robotic-assisted laparoscopic pelvic and para-aortic lymph node dissection. Patient was discharged on postoperative day 2 after an apparent uncomplicated procedure. The patient was readmitted the hospital on postoperative day 9 with abdominal distention and a CT-scan revealed free fluid in the abdomen and pelvis. A paracentesis demonstrated milky-fluid with an elevated concentration of triglycerides, confirming the diagnosis of chylous ascites. She recovered well with conservative measures. The risk of postoperative chylous ascites following lymph node dissection is still present despite the utilization of new technologies such as the da Vinci robot

    Identifying appropriate reference ecosystems based on soil indicators to evaluate postmining reclamation: A multivariate framework

    Get PDF
    ABSTRACT Large-scale mining operations, such as those associated with iron extraction, disturb soils and vegetation and create the need for effective rehabilitation practices. The Iron Quadrangle region of southeastern Brazil is one of the world’s biodiversity hotspots; however, iron mining activities threaten many natural and seminatural ecosystem types in which many rare/protected species occur. The Iron Quadrangle has four main ecosystem types: Atlantic Forest (AF), ferruginous rupestrian grassland with dense vegetation (FRG-D); ferruginous rupestrian grassland with sparse vegetation (FRG-S); and quartzite rupestrian grassland (QRG). To support rehabilitation and monitoring plans, we evaluated reference areas and identified soil and vegetative attributes that best differentiated between these four ecosystems. We measured thirty-four physical, chemical, and biological soil properties and two vegetation parameters and, using a multivariate analysis, detected: 1) correlations between properties and 2) differences between areas. We identified twelve properties that best differentiated the areas (in order from most to least relevant): nickel content; exchangeable aluminum; clay content; above-ground vegetation volume; aluminum saturation; particle density; bulk density; arsenic content; zinc content; lead content, fine sand plus silt content; and fine sand content. Soil physicochemical properties proved to be more sensitive to differences in ecosystem type, and in particular, parameters related to fertility and the presence of metals and semi-metals differentiated the AF from the FRG-D and FRG-S. Soil physical properties, including fine sand and silt content, were most important for differentiating QRG from the other ecosystems, possibly resulting from the exposure of quartzite material to erosive processes. This study demonstrates the importance of identifying appropriate reference areas for post-mining reclamation

    Potential involvement of the bone marrow in experimental Graves’ disease and thyroid eye disease

    Get PDF
    IntroductionGraves’ disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves’ disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves’ disease and TED is unknown. Here, we investigated whether induction of experimental Graves’ disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation.ResultsImmunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≀0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≀0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≀0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≀0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≀0.0001) in the bone marrow (all p≀ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≀0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≀0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib.ConclusionCollectively, these data indicate that the bone marrow is activated in experimental Graves’ disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition

    Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease

    Get PDF
    IntroductionGraves’ disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED.MethodsLinsitinib was administered orally for four weeks with therapy initiating in either the early (“active”) or the late (“chronic”) phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&amp;E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit.ResultsLinsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue.ConclusionHere, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves’ disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves’ Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease
    • 

    corecore