102 research outputs found
A Compact Source for Quantum Image Processing with Four-wave Mixing in Rubidium-85
We have built a compact light source for bright squeezed twin-beams at
795\,nm based on four-wave-mixing in atomic Rb vapor. With a total
optical power of 400\,mW derived from a free running diode laser and a tapered
amplifier to pump the four-wave-mixing process, we achieve 2.1\,dB intensity
difference squeezing of the twin beams below the standard quantum limit,
without accounting for losses. Squeezed twin beams generated by the type of
source presented here could be used as reference for the precise calibration of
photodetectors. Transferring the quantum correlations from the light to atoms
in order to generate correlated atom beams is another interesting prospect. In
this work we investigate the dispersion that is generated by the employed
four-wave-mixing process with respect to bandwidth and dependence on probe
detuning. We are currently using this squeezed light source to test the
transfer of spatial information and quantum correlations through media of
anomalous dispersion.Comment: 6 pages, 4 figure
Coupled Three-Mode Squeezed Vacuum
Multipartite entanglement is a key resource for various quantum information
tasks. Here, we present a scheme for generating genuine tripartite entanglement
via nonlinear optical processes. We derive, in the Fock basis, the
corresponding output state which we termed the coupled three-mode squeezed
vacuum. We find unintuitive behaviors arise in intensity squeezing between two
of the three output modes due to the coupling present. We also show that this
state can be genuinely tripartite entangled
Realization of an all-optical zero to π cross-phase modulation jump
We report on the experimental demonstration of an all-optical π cross-phase modulation jump. By performing a preselection, an optically induced unitary transformation, and then a postselection on the polarization degree of freedom, the phase of the output beam acquires either a zero or π phase shift (with no other possible values). The postselection results in optical loss in the output beam. An input state may be chosen near the resulting phase singularity, yielding a pi phase shift even for weak interaction strengths. The scheme is experimentally demonstrated using a coherently prepared dark state in a warm atomic cesium vapor
- …