2,494 research outputs found
Development of a thermostable ID93 + GLA-SE vaccine using a design of experiments (DOE) approach
Next-generation rationally-designed vaccine adjuvants represent a significant breakthrough to enable development of vaccines against challenging diseases including tuberculosis, HIV, and malaria. New vaccine candidates often require maintenance of a cold-chain process to ensure long-term stability and separate vialing to enable bedside mixing of antigen and adjuvant. This presents a significant financial and technological barrier to worldwide implementation of such vaccines. Herein we describe the development of a single-vial lyophilized thermostable tuberculosis vaccine comprised of an antigen (ID93) and an oil-in water emulsion adjuvant (GLA-SE), using a design of experiment (DOE) approach. Stabilizing excipients were identified, and the effect of various factors were evaluated to determine optimized formulations that minimized GLA and ID93 degradation, particle size growth, and pH change, while optimizing cake quality. Formulations were identified that are stable at elevated temperatures. Further this vaccine retains the ability to elicit both antibody and TH1 responses against the vaccine antigen and protect against experimental challenge with Mycobacterium tuberculosis. These results represent a significant breakthrough in the development of vaccine candidates that can be implemented throughout the world without being hampered by the necessity of a continuous cold chain or separate adjuvant and antigen vials
Rapid Targeted Gene Disruption in Bacillus Anthracis
Anthrax is a zoonotic disease recognized to affect herbivores since Biblical times and has the widest range of susceptible host species of any known pathogen. The ease with which the bacterium can be weaponized and its recent deliberate use as an agent of terror, have highlighted the importance of gaining a deeper understanding and effective countermeasures for this important pathogen. High quality sequence data has opened the possibility of systematic dissection of how genes distributed on both the bacterial chromosome and associated plasmids have made it such a successful pathogen. However, low transformation efficiency and relatively few genetic tools for chromosomal manipulation have hampered full interrogation of its genome. Results: Group II introns have been developed into an efficient tool for site-specific gene inactivation in several organisms. We have adapted group II intron targeting technology for application in Bacillus anthracis and generated vectors that permit gene inactivation through group II intron insertion. The vectors developed permit screening for the desired insertion through PCR or direct selection of intron insertions using a selection scheme that activates a kanamycin resistance marker upon successful intron insertion. Conclusions: The design and vector construction described here provides a useful tool for high throughput experimental interrogation of the Bacillus anthracis genome and will benefit efforts to develop improved vaccines and therapeutics.Chem-Bio Diagnostics program from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA) B102387MNIH GM037949Welch Foundation F-1607Cellular and Molecular Biolog
Midisuperspace Supersymmetric Quantum Cosmology
We investigate the canonical quantization in the framework of N=1 simple
supergravity for the case of a very simple gravitational midisuperspace
described by Gowdy cosmological models. We consider supersymmetric
quantum cosmology in the mentioned midisuperspace, where a matrix
representation for the gravitino covector--spinor is used. The full Lorentz
constraint and its implications for the wave function of the universe are
analyzed in detail. We found that there are indeed physical states in the
midisuperspace sector of the theory in contrast to the case of minisuperspace
where there exist no physical states.Comment: Accepted in Physical Review
The Principle of Symmetric Criticality in General Relativity
We consider a version of Palais' Principle of Symmetric Criticality (PSC)
that is applicable to the Lie symmetry reduction of Lagrangian field theories.
PSC asserts that, given a group action, for any group-invariant Lagrangian the
equations obtained by restriction of Euler-Lagrange equations to
group-invariant fields are equivalent to the Euler-Lagrange equations of a
canonically defined, symmetry-reduced Lagrangian. We investigate the validity
of PSC for local gravitational theories built from a metric. It is shown that
there are two independent conditions which must be satisfied for PSC to be
valid. One of these conditions, obtained previously in the context of
transverse symmetry group actions, provides a generalization of the well-known
unimodularity condition that arises in spatially homogeneous cosmological
models. The other condition seems to be new. The conditions that determine the
validity of PSC are equivalent to pointwise conditions on the group action
alone. These results are illustrated with a variety of examples from general
relativity. It is straightforward to generalize all of our results to any
relativistic field theory.Comment: 46 pages, Plain TeX, references added in revised versio
Comments on Closed Bianchi Models
We show several kinematical properties that are intrinsic to the Bianchi
models with compact spatial sections. Especially, with spacelike hypersurfaces
being closed, (A) no anisotropic expansion is allowed for Bianchi type V and
VII(A\not=0), and (B) type IV and VI(A\not=0,1) does not exist. In order to
show them, we put into geometric terms what is meant by spatial homogeneity and
employ a mathematical result on 3-manifolds. We make clear the relation between
the Bianchi type symmetry of space-time and spatial compactness, some part of
which seem to be unnoticed in the literature. Especially, it is shown under
what conditions class B Bianchi models do not possess compact spatial sections.
Finally we briefly describe how this study is useful in investigating global
dynamics in (3+1)-dimensional gravity.Comment: 14 pages with one table, KUCP-5
Blur detection is unaffected by cognitive load
Blur detection is affected by retinal eccentricity, but is it also affected by attentional resources? Research showing effects of selective attention on acuity and contrast sensitivity suggests that allocating attention should increase blur detection. However, research showing that blur affects selection of saccade targets suggests that blur detection may be pre-attentive. To investigate this question, we carried out experiments in which viewers detected blur in real-world scenes under varying levels of cognitive load manipulated by the N-back task. We used adaptive threshold estimation to measure blur detection thresholds at 0°, 3°, 6°, and 9° eccentricity. Participants carried out blur detection as a single task, a single task with to-be-ignored letters, or an N-back task with four levels of cognitive load (0, 1, 2, or 3-back). In Experiment 1, blur was presented gaze-contingently for occasional single eye fixations while participants viewed scenes in preparation for an easy picture recognition memory task, and the N-back stimuli were presented auditorily. The results for three participants showed a large effect of retinal eccentricity on blur thresholds, significant effects of N-back level on N-back performance, scene recognition memory, and gaze dispersion, but no effect of N-back level on blur thresholds. In Experiment 2, we replicated Experiment 1 but presented the images tachistoscopically for 200 ms (half with, half without blur), to determine whether gaze-contingent blur presentation in Experiment 1 had produced attentional capture by blur onset during a fixation, thus eliminating any effect of cognitive load on blur detection. The results with three new participants replicated those of Experiment 1, indicating that the use of gaze-contingent blur presentation could not explain the lack of effect of cognitive load on blur detection. Thus, apparently blur detection in real-world scene images is unaffected by attentional resources, as manipulated by the cognitive load produced by the N-back task
Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems
We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE
Optimization of strength and ductility in nanotwinned ultra-fine grained Ag: Twin density and grain orientations
Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is not reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong 〈1 1 1〉 fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: (1) untwinned grains and (2) nanowinned grains that are not oriented with 〈1 1 1〉 along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with 〈1 1 1〉 along the growth direction are softer than nanotwinned grains that are oriented with 〈1 1 1〉 along the growth direction. We have revealed that an ultrafine-grained (150–200 nm) structure consisting of a mixture of nanotwinned (∼8–12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility
Axially Symmetric Bianchi I Yang-Mills Cosmology as a Dynamical System
We construct the most general form of axially symmetric SU(2)-Yang-Mills
fields in Bianchi cosmologies. The dynamical evolution of axially symmetric YM
fields in Bianchi I model is compared with the dynamical evolution of the
electromagnetic field in Bianchi I and the fully isotropic YM field in
Friedmann-Robertson-Walker cosmologies. The stochastic properties of axially
symmetric Bianchi I-Einstein-Yang-Mills systems are compared with those of
axially symmetric YM fields in flat space. After numerical computation of
Liapunov exponents in synchronous (cosmological) time, it is shown that the
Bianchi I-EYM system has milder stochastic properties than the corresponding
flat YM system. The Liapunov exponent is non-vanishing in conformal time.Comment: 18 pages, 6 Postscript figures, uses amsmath,amssymb,epsfig,verbatim,
to appear in CQ
- …