3,073 research outputs found

    Our Patient System and Health Care Information Technology: Valuable Incentive or Impediment to Innovation?

    Get PDF
    Patentable inventions have often been transformative, but the pace of such innovation has changed exponentially in the last thirty years. The patent law still seeks to reward ingenuity and nowhere should this maxim be truer than in the area of health information technology. But the pace and scope of changes in that arena have made rewarding that ingenuity with a patent increasingly difficult. The courts have struggled to apply patent laws to technology that is new and novel to a fault. This Article seeks to address how it is possible to continue to reward ingenuity in a field where progress will save not just money but lives

    Automatic Order Detection and Restoration Through Systematically Improvable Variational Wave Functions

    Full text link
    Variational wave function ansatze are an invaluable tool to study the properties of strongly correlated systems. We propose such a wave function, based on the theory of auxiliary fields and combining aspects of auxiliary-field quantum Monte Carlo and modern variational optimization techniques including automatic differentiation. The resulting ansatz, consisting of several slices of optimized projectors, is highly expressive and systematically improvable. We benchmark this form on the two-dimensional Hubbard model, using both cylindrical and large, fully periodic supercells. The computed ground-state energies are competitive with the best variational results. Moreover, the optimized wave functions predict the correct ground-state order with near full symmetry restoration (i.e. translation invariance) despite initial states with incorrect orders. The ansatz can become a tool for local order prediction, leading to a new paradigm for variational studies of bulk systems. It can also be viewed as an approach to produce accurate and systematically improvable wave functions in a convenient form of non-orthogonal Slater determinants (e.g., for quantum chemistry) at polynomial computational cost

    Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers

    Full text link
    Quantum process tomography is a powerful tool for understanding quantum channels and characterizing properties of quantum devices. Inspired by recent advances using classical shadows in quantum state tomography[1], we have developed ShadowQPT, a classical shadow method for quantum process tomography. We introduce two related formulations with and without ancilla qubits. ShadowQPT stochastically reconstructs the Choi matrix of the device allowing for an a-posteri classical evaluation of the device on arbitrary inputs with respect to arbitrary outputs. Using shadows we then show how to compute overlaps, generate all kk-weight reduced processes, and perform reconstruction via Hamiltonian learning. These latter two tasks are efficient for large systems as the number of quantum measurements needed scales only logarithmically with the number of qubits. A number of additional approximations and improvements are developed including the use of a pair-factorized Clifford shadow and a series of post-processing techniques which significantly enhance the accuracy for recovering the quantum channel. We have implemented ShadowQPT using both Pauli and Clifford measurements on the IonQ trapped ion quantum computer for quantum processes up to n=4n=4 qubits and achieved good performance.Comment: Revised with additional Hamiltonian learning sectio

    On the Effect of Anticipation on Reading Times

    Full text link
    Over the past two decades, numerous studies have demonstrated how less predictable (i.e., higher surprisal) words take more time to read. In general, these studies have implicitly assumed the reading process is purely responsive: Readers observe a new word and allocate time to process it as required. We argue that prior results are also compatible with a reading process that is at least partially anticipatory: Readers could make predictions about a future word and allocate time to process it based on their expectation. In this work, we operationalize this anticipation as a word's contextual entropy. We assess the effect of anticipation on reading by comparing how well surprisal and contextual entropy predict reading times on four naturalistic reading datasets: two self-paced and two eye-tracking. Experimentally, across datasets and analyses, we find substantial evidence for effects of contextual entropy over surprisal on a word's reading time (RT): in fact, entropy is sometimes better than surprisal in predicting a word's RT. Spillover effects, however, are generally not captured by entropy, but only by surprisal. Further, we hypothesize four cognitive mechanisms through which contextual entropy could impact RTs -- three of which we are able to design experiments to analyze. Overall, our results support a view of reading that is not just responsive, but also anticipatory.Comment: This is a pre-MIT Press publication version of the paper. Code is available in https://github.com/rycolab/anticipation-on-reading-time

    Testing the Predictions of Surprisal Theory in 11 Languages

    Full text link
    A fundamental result in psycholinguistics is that less predictable words take a longer time to process. One theoretical explanation for this finding is Surprisal Theory (Hale, 2001; Levy, 2008), which quantifies a word's predictability as its surprisal, i.e. its negative log-probability given a context. While evidence supporting the predictions of Surprisal Theory have been replicated widely, most have focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times; (ii) whether expected surprisal, i.e. contextual entropy, is predictive of reading times; (iii) and whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to-date between information theory and incremental language processing across languages.Comment: This is a pre-MIT Press publication version of the pape
    • …
    corecore