6 research outputs found
Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers
The Nrf2 pathway is frequently activated in human cancers through mutations in Nrf2 or its negative regulator KEAP1. Using a cell-line-derived gene signature for Nrf2 pathway activation, we found that some tumors show high Nrf2 activity in the absence of known mutations in the pathway. An analysis of splice variants in oncogenes revealed that such tumors express abnormal transcript variants from the NFE2L2 gene (encoding Nrf2) that lack exon 2, or exons 2 and 3, and encode Nrf2 protein isoforms missing the KEAP1 interaction domain. The Nrf2 alterations result in the loss of interaction with KEAP1, Nrf2 stabilization, induction of a Nrf2 transcriptional response, and Nrf2 pathway dependence. In all analyzed cases, transcript variants were the result of heterozygous genomic microdeletions. Thus, we identify an alternative mechanism for Nrf2 pathway activation in human tumors and elucidate its functional consequences
Recommended from our members
BRAF in Lung Cancers: Analysis of Patient Cases Reveals Recurrent BRAF Mutations, Fusions, Kinase Duplications, and Concurrent Alterations.
Dabrafenib and trametinib are approved for the management of advanced non-small-cell lung cancers (NSCLCs) that harbor BRAF V600E mutations. Small series and pan-cancer analyses have identified non-V600 alterations as therapeutic targets. We sought to examine a large genomic data set to comprehensively characterize non-V600 BRAF alterations in lung cancer. A total of 23,396 patients with lung cancer provided data to assay with comprehensive genomic profiling. Data were reviewed for predicted pathogenic BRAF base substitutions, short insertions and deletions, copy number changes, and rearrangements. Adenocarcinomas represented 65% of the occurrences; NSCLC not otherwise specified (NOS), 15%; squamous cell carcinoma, 12%; and small-cell lung carcinoma, 5%. BRAF was altered in 4.5% (1,048 of 23,396) of all tumors; 37.4% (n = 397) were BRAF V600E, 38% were BRAF non-V600E activating mutations, and 18% were BRAF inactivating. Rearrangements were observed at a frequency of 4.3% and consisted of N-terminal deletions (NTDs; 0.75%), kinase domain duplications (KDDs; 0.75%), and BRAF fusions (2.8%). The fusions involved three recurrent fusion partners: ARMC10, DOCK4, and TRIM24. BRAF V600E was associated with co-occurrence of SETD2 alterations, but other BRAF alterations were not and were instead associated with CDKN2A, TP53, and STK11 alterations (P < .05). Potential mechanisms of acquired resistance to BRAF V600E inhibition are demonstrated. This series characterized the frequent occurrence (4.4%) of BRAF alterations in lung cancers. Recurrent BRAF alterations in NSCLC adenocarcinoma are comparable to the frequency of other NSCLC oncogenic drivers, such as ALK, and exceed that of ROS1 or RET. This work supports a broad profiling approach in lung cancers and suggests that non-V600E BRAF alterations represent a subgroup of lung cancers in which targeted therapy should be considered
BRAF
Dabrafenib and trametinib are approved for the management of advanced non-small-cell lung cancers (NSCLCs) that harbor BRAF V600E mutations. Small series and pan-cancer analyses have identified non-V600 alterations as therapeutic targets. We sought to examine a large genomic data set to comprehensively characterize non-V600 BRAF alterations in lung cancer. A total of 23,396 patients with lung cancer provided data to assay with comprehensive genomic profiling. Data were reviewed for predicted pathogenic BRAF base substitutions, short insertions and deletions, copy number changes, and rearrangements. Adenocarcinomas represented 65% of the occurrences; NSCLC not otherwise specified (NOS), 15%; squamous cell carcinoma, 12%; and small-cell lung carcinoma, 5%. BRAF was altered in 4.5% (1,048 of 23,396) of all tumors; 37.4% (n = 397) were BRAF V600E, 38% were BRAF non-V600E activating mutations, and 18% were BRAF inactivating. Rearrangements were observed at a frequency of 4.3% and consisted of N-terminal deletions (NTDs; 0.75%), kinase domain duplications (KDDs; 0.75%), and BRAF fusions (2.8%). The fusions involved three recurrent fusion partners: ARMC10, DOCK4, and TRIM24. BRAF V600E was associated with co-occurrence of SETD2 alterations, but other BRAF alterations were not and were instead associated with CDKN2A, TP53, and STK11 alterations (P < .05). Potential mechanisms of acquired resistance to BRAF V600E inhibition are demonstrated. This series characterized the frequent occurrence (4.4%) of BRAF alterations in lung cancers. Recurrent BRAF alterations in NSCLC adenocarcinoma are comparable to the frequency of other NSCLC oncogenic drivers, such as ALK, and exceed that of ROS1 or RET. This work supports a broad profiling approach in lung cancers and suggests that non-V600E BRAF alterations represent a subgroup of lung cancers in which targeted therapy should be considered
Actionable Activating Oncogenic ERBB2/HER2 Transmembrane and Juxtamembrane Domain Mutations
Deregulated HER2 is a target of many approved cancer drugs. We analyzed 111,176 patient tumors and identified recurrent mutations in HER2 transmembrane domain (TMD) and juxtamembrane domain (JMD) that include G660D, R678Q, E693K, and Q709L. Using a saturation mutagenesis screen and testing of patient-derived mutations we found several activating TMD and JMD mutations. Structural modeling and analysis showed that the TMD/JMD mutations function by improving the active dimer interface or stabilizing an activating conformation. Further, we found that HER2 G660D employed asymmetric kinase dimerization for activation and signaling. Importantly, anti-HER2 antibodies and small-molecule kinase inhibitors blocked the activity of TMD/JMD mutants. Consistent with this, a G660D germline mutant lung cancer patient showed remarkable clinical response to HER2 blockade