38,348 research outputs found

    The power of neural nets

    Get PDF
    Implementation of the Hopfield net which is used in the image processing type of applications where only partial information about the image may be available is discussed. The image classification type of algorithm of Hopfield and other learning algorithms, such as the Boltzmann machine and the back-propagation training algorithm, have many vital applications in space

    Automated parameters for troubled-cell indicators using outlier detection

    Get PDF
    In Vuik and Ryan (2014) we studied the use of troubled-cell indicators for discontinuity detection in nonlinear hyperbolic partial differential equations and introduced a new multiwavelet technique to detect troubled cells. We found that these methods perform well as long as a suitable, problem-dependent parameter is chosen. This parameter is used in a threshold which decides whether or not to detect an element as a troubled cell. Until now, these parameters could not be chosen automatically. The choice of the parameter has impact on the approximation: it determines the strictness of the troubled-cell indicator. An inappropriate choice of the parameter will result in detection (and limiting) of too few or too many elements. The optimal parameter is chosen such that the minimal number of troubled cells is detected and the resulting approximation is free of spurious oscillations. In this paper we will see that for each troubled-cell indicator the sudden increase or decrease of the indicator value with respect to the neighboring values is important for detection. Indication basically reduces to detecting the outliers of a vector (one dimension) or matrix (two dimensions). This is done using Tukey's boxplot approach to detect which coefficients in a vector are straying far beyond others (Tukey, 1977). We provide an algorithm that can be applied to various troubled-cell indication variables. Using this technique the problem-dependent parameter that the original indicator requires is no longer necessary as the parameter will be chosen automatically

    Crop-Share Leasing Arrangements For Irrigated Land in Kansas

    Get PDF
    Crop Production/Industries, Farm Management,

    Organizational Conflict Resolution and Strategic Choice: Evidence from a Survey of Fortune 1000 Companies

    Get PDF
    In this paper we develop the argument that a firm’s ADR strategies are likely to be associated with a firm’s use of one conflict resolution option or the other. More specifically, we examine whether a firm’s use of either arbitration or mediation is a function of (1) the extent to which the use of either of these dispute resolution processes aligns with the goals and objectives management is seeking to advance, and (2) the extent of the firm’s commitment to the use of these practices. We expect to find that an organization’s use of either mediation or arbitration may be governed by different underlying strategic objectives as well as the firm’s broader commitment to ADR. In what follows, we further develop this strategic choice argument

    Carbocations and the Complex Flavor and Bouquet of Wine: Mechanistic Aspects of Terpene Biosynthesis in Wine Grapes.

    Get PDF
    Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, α-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation

    Neutrinoless double-beta decay. A brief review

    Full text link
    In this brief review we discuss the generation of Majorana neutrino masses through the see-saw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of theta_13, and the interpretation of the results of neutrinoless double-beta decay experiments.Comment: 22 page

    Geophysical and astronomical models applied in the analysis of very long baseline interferometry

    Get PDF
    Very long baseline interferometry presents an opportunity to measure at the centimeter level such geodetic parameters as baseline length and instantaneous pole position. In order to achieve such precision, the geophysical and astronomical models used in data analysis must be as accurate as possible. The Mark-3 interactive data analysis system includes a number of refinements beyond conventional practice in modeling precession, nutation, diurnal polar motion, UT1, solid Earth tides, relativistic light deflection, and reduction to solar system barycentric coordinates. The algorithms and their effects on the recovered geodetic, geophysical, and astrometric parameters are discussed

    Sum Rates, Rate Allocation, and User Scheduling for Multi-User MIMO Vector Perturbation Precoding

    Full text link
    This paper considers the multiuser multiple-input multiple-output (MIMO) broadcast channel. We consider the case where the multiple transmit antennas are used to deliver independent data streams to multiple users via vector perturbation. We derive expressions for the sum rate in terms of the average energy of the precoded vector, and use this to derive a high signal-to-noise ratio (SNR) closed-form upper bound, which we show to be tight via simulation. We also propose a modification to vector perturbation where different rates can be allocated to different users. We conclude that for vector perturbation precoding most of the sum rate gains can be achieved by reducing the rate allocation problem to the user selection problem. We then propose a low-complexity user selection algorithm that attempts to maximize the high-SNR sum rate upper bound. Simulations show that the algorithm outperforms other user selection algorithms of similar complexity.Comment: 27 pages with 6 figures and 2 tables. Accepted for publication in IEEE Trans. Wireless Comm

    The Mark 3 data base handler

    Get PDF
    A data base handler which would act to tie Mark 3 system programs together is discussed. The data base handler is written in FORTRAN and is implemented on the Hewlett-Packard 21MX and the IBM 360/91. The system design objectives were to (1) provide for an easily specified method of data interchange among programs, (2) provide for a high level of data integrity, (3) accommodate changing requirments, (4) promote program accountability, (5) provide a single source of program constants, and (6) provide a central point for data archiving. The system consists of two distinct parts: a set of files existing on disk packs and tapes; and a set of utility subroutines which allow users to access the information in these files. Users never directly read or write the files and need not know the details of how the data are formatted in the files. To the users, the storage medium is format free. A user does need to know something about the sequencing of his data in the files but nothing about data in which he has no interest

    Mark 3 interactive data analysis system

    Get PDF
    The interactive data analysis system, a major subset of the total Mark 3 very long baseline interferometry (VLBI) software system is described. The system consists of two major and a number of small programs. These programs provide for the scientific analysis of the observed values of delay and delay rate generated by the VLBI data reduction programs and product the geophysical and astrometric parameters which are among the ultimate products of VLBI. The two major programs are CALC and SOLVE. CALC generates the theoretical values of VLBI delay rate as well as partial derivatives based on apriori values of the geophysical and astronometric parameters. SOLVE is a least squares parameters estimation program which yields the geophysical and astrometric parameters using the observed values by the data processing system and theoretical values and partial derivatives provided by CALC. SOLVE is a highly interactive program in which the user selects the exact form of the recovered parameters and the data to be accepted into the solution
    corecore