6,133 research outputs found
Bayesian Optimization with Unknown Constraints
Recent work on Bayesian optimization has shown its effectiveness in global
optimization of difficult black-box objective functions. Many real-world
optimization problems of interest also have constraints which are unknown a
priori. In this paper, we study Bayesian optimization for constrained problems
in the general case that noise may be present in the constraint functions, and
the objective and constraints may be evaluated independently. We provide
motivating practical examples, and present a general framework to solve such
problems. We demonstrate the effectiveness of our approach on optimizing the
performance of online latent Dirichlet allocation subject to topic sparsity
constraints, tuning a neural network given test-time memory constraints, and
optimizing Hamiltonian Monte Carlo to achieve maximal effectiveness in a fixed
time, subject to passing standard convergence diagnostics.Comment: 14 pages, 3 figure
Recommended from our members
The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease.
Perivascular microglia activation is a hallmark of inflammatory demyelination in multiple sclerosis (MS), but the mechanisms underlying microglia activation and specific strategies to attenuate their activation remain elusive. Here, we identify fibrinogen as a novel regulator of microglia activation and show that targeting of the interaction of fibrinogen with the microglia integrin receptor Mac-1 (alpha(M)beta(2), CD11b/CD18) is sufficient to suppress experimental autoimmune encephalomyelitis in mice that retain full coagulation function. We show that fibrinogen, which is deposited perivascularly in MS plaques, signals through Mac-1 and induces the differentiation of microglia to phagocytes via activation of Akt and Rho. Genetic disruption of fibrinogen-Mac-1 interaction in fibrinogen-gamma(390-396A) knock-in mice or pharmacologically impeding fibrinogen-Mac-1 interaction through intranasal delivery of a fibrinogen-derived inhibitory peptide (gamma(377-395)) attenuates microglia activation and suppresses relapsing paralysis. Because blocking fibrinogen-Mac-1 interactions affects the proinflammatory but not the procoagulant properties of fibrinogen, targeting the gamma(377-395) fibrinogen epitope could represent a potential therapeutic strategy for MS and other neuroinflammatory diseases associated with blood-brain barrier disruption and microglia activation
High-stability tin/carbon battery electrodes produced using reduction expansion synthesis
17 USC 105 interim-entered record; under review.This study shows high stability Sn (10 wt %)/carbon Li-ion battery anodes can be made via the Reduction Expansion Synthesis (RES) process. Hybrid Sn/C anodes had an initial capacity of 425 mAh g-1 which stabilized to ~340 mAh g-1 after less than 10 cycles. Unlike earlier Sn/C anodes, capacity remained virtually constant for more than 180 additional cycles. Neat carbon independently tested for Li capacity had a steady specific capacity of 280 mAh g-1. The difference detected between the pure carbon and Sn/C cases are consistent with Sn having the theoretical capacity of ~1000 mAh g-1. The high stability of the RES derived anodes, relative to earlier Sn based electrodes, is postulated to exist because RES synthesis enables the formation of direct, strong bond between Sn and carbon substrate atoms, hence reducing the rate of Sn electrode disintegration and capacity fade due to expansion upon lithiation. X-ray diffraction and transmission electron microscopy are consistent with this postulate as both show an initial Sn particles size of only a few nanometers and minimal growth after cycling. Reduced interface resistance is also indicative of unique Sn-carbon bond.Office of Naval Research for supporting this project under Naval Enterprise Partnership Teaming with Universities for National Excellence at Purdue Center for Power and Energy ResearchGrant number N00014-15-1-283
Dehydropolymerization of H3B·NMeH2 Using a [Rh(DPEphos)]+ Catalyst : The Promoting Effect of NMeH2
[Rh(κ2-PP-DPEphos){η2η2-H2B(NMe3)(CH2)2tBu}][BArF4] acts as an effective precatalyst for the dehydropolymerization of H3B·NMeH2 to form N-methylpolyaminoborane (H2BNMeH)n. Control of polymer molecular weight is achieved by variation of precatalyst loading (0.1-1 mol %, an inverse relationship) and use of the chain-modifying agent H2: with Mn ranging between 5 500 and 34 900 g/mol and between 1.5 and 1.8. H2 evolution studies (1,2-F2C6H4 solvent) reveal an induction period that gets longer with higher precatalyst loading and complex kinetics with a noninteger order in [Rh]TOTAL. Speciation studies at 10 mol % indicate the initial formation of the amino-borane bridged dimer, [Rh2(κ2-PP-DPEphos)2(μ-H)(μ-H2BN=HMe)][BArF4], followed by the crystallographically characterized amidodiboryl complex [Rh2(cis-κ2-PP-DPEphos)2(σ,μ-(H2B)2NHMe)][BArF4]. Adding ∼2 equiv of NMeH2 in tetrahydrofuran (THF) solution to the precatalyst removes this induction period, pseudo-first-order kinetics are observed, a half-order relationship to [Rh]TOTAL is revealed with regard to dehydrogenation, and polymer molecular weights are increased (e.g., Mn = 40 000 g/mol). Speciation studies suggest that NMeH2 acts to form the precatalysts [Rh(κ2-DPEphos)(NMeH2)2][BArF4] and [Rh(κ2-DPEphos)(H)2(NMeH2)2][BArF4], which were independently synthesized and shown to follow very similar dehydrogenation kinetics, and produce polymers of molecular weight comparable with [Rh(κ2-PP-DPEphos){ η2-H2B(NMe3)(CH2)2tBu}][BArF4], which has been doped with amine. This promoting effect of added amine in situ is shown to be general in other cationic Rh-based systems, and possible mechanistic scenarios are discussed
Wellbeing and HCI in later life – what matters?
As part of the Challenging Obstacles and Barriers to Assisted Living Technologies (COBALT) project, we developed the COBALT Tools for EngagementTM, a number of innovative techniques to engage older people in all stages of technology development process. In the present study we used Technology Tours of the homes of eight older adults to look at their daily usage and examine the ways in which tech-nology influences well-being. All of the participants use multiple tech-nologies every day both inside the home and out. The data highlighted how technology contributes to well-being in a number of ways, includ-ing enabling them to maintain current activities; providing a means of staying in touch with families and friends; being easy to access and learn to use; and enhancing their lives. These can be divided into two types of factors: ones that relate to the direct outcomes of technology use and how these contribute to feelings of wellbeing and factors that relate to meeting an individual’s needs, which if met contribute to their well-being. The findings indicate that well-being is a multi-faceted con-struct that includes autonomy, i.e. remaining independent, competence both in continuing to complete activities and learning new ones, and communication with other people. The study also indicates that Tech-nology Tours provide an easily applicable and accessible means for en-abling older adults to speak as ‘experts’ on technology
The fibrin-derived γ377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease
Perivascular microglia activation is a hallmark of inflammatory demyelination in multiple sclerosis (MS), but the mechanisms underlying microglia activation and specific strategies to attenuate their activation remain elusive. Here, we identify fibrinogen as a novel regulator of microglia activation and show that targeting of the interaction of fibrinogen with the microglia integrin receptor Mac-1 (αMβ2, CD11b/CD18) is sufficient to suppress experimental autoimmune encephalomyelitis in mice that retain full coagulation function. We show that fibrinogen, which is deposited perivascularly in MS plaques, signals through Mac-1 and induces the differentiation of microglia to phagocytes via activation of Akt and Rho. Genetic disruption of fibrinogen–Mac-1 interaction in fibrinogen-γ390-396A knock-in mice or pharmacologically impeding fibrinogen–Mac-1 interaction through intranasal delivery of a fibrinogen-derived inhibitory peptide (γ377-395) attenuates microglia activation and suppresses relapsing paralysis. Because blocking fibrinogen–Mac-1 interactions affects the proinflammatory but not the procoagulant properties of fibrinogen, targeting the γ377-395 fibrinogen epitope could represent a potential therapeutic strategy for MS and other neuroinflammatory diseases associated with blood-brain barrier disruption and microglia activation
Biorefinery and Hydrogen Fuel Cell Research
In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products
SPIRITS 16tn in NGC 3556: A heavily obscured and low-luminosity supernova at 8.8 Mpc
We present the discovery by the SPitzer InfraRed Intensive Transients Survey
(SPIRITS) of a likely supernova (SN) in NGC 3556 at only 8.8 Mpc, which,
despite its proximity, was not detected by optical searches. A luminous
infrared (IR) transient at mag (Vega), SPIRITS 16tn is
coincident with a dust lane in the inclined, star-forming disk of the host.
Using IR, optical, and radio observations, we attempt to determine the nature
of this event. We estimate 8 - 9 mag of extinction, placing it
among the three most highly obscured IR-discovered SNe to date. The [4.5] light
curve declined at a rate of 0.013 mag day, and the color
grew redder from 0.7 to 1.0 mag by 184.7 days post discovery.
Optical/IR spectroscopy shows a red continuum, but no clearly discernible
features, preventing a definitive spectroscopic classification. Deep radio
observations constrain the radio luminosity of SPIRITS 16tn to erg s Hz between 3 - 15 GHz, excluding many
varieties of radio core-collapse SNe. A type Ia SN is ruled out by the observed
red IR color, and lack of features normally attributed to Fe-peak elements in
the optical and IR spectra. SPIRITS 16tn was fainter at [4.5] than typical
stripped-envelope SNe by 1 mag. Comparison of the spectral energy
distribution to SNe II suggests SPIRITS 16tn was both highly obscured, and
intrinsically dim, possibly akin to the low-luminosity SN 2005cs. We infer the
presence of an IR dust echo powered by a peak luminosity of the transient of erg s erg s,
consistent with the observed range for SNe II. This discovery illustrates the
power of IR surveys to overcome the compounding effects of visible extinction
and optically sub-luminous events in completing the inventory of nearby SNe.Comment: 25 pages, 10 figures, submitted to Ap
Comparison of Winter Strawberry Production in a Commercial Heated High Tunnel versus a University Greenhouse
For the past 4 years, the University of Nebraska strawberry team has worked to develop low cost, sustainable methods for farmers and growers to produce strawberries in a double polyethylene greenhouse during the winter. This past year, this growing system was adapted to become a commercial grower’s heated high tunnel for the winter/spring of 2013-14. The idea was to scale up to a farm-size demonstration and compare it to the university greenhouse production system with a goal to expand marketing opportunities for strawberries into the winter season
- …