7 research outputs found
Complete moduli of cubic threefolds and their intermediate Jacobians
The intermediate Jacobian map, which associates to a smooth cubic threefold
its intermediate Jacobian, does not extend to the GIT compactification of the
space of cubic threefolds, not even as a map to the Satake compactification of
the moduli space of principally polarized abelian fivefolds. A much better
"wonderful" compactification of the space of cubic threefolds was constructed
by the first and fourth authors --- it has a modular interpretation, and
divisorial normal crossing boundary. We prove that the intermediate Jacobian
map extends to a morphism from the wonderful compactification to the second
Voronoi toroidal compactification of the moduli of principally polarized
abelian fivefolds --- the first and fourth author previously showed that it
extends to the Satake compactification. Since the second Voronoi
compactification has a modular interpretation, our extended intermediate
Jacobian map encodes all of the geometric information about the degenerations
of intermediate Jacobians, and allows for the study of the geometry of cubic
threefolds via degeneration techniques. As one application we give a complete
classification of all degenerations of intermediate Jacobians of cubic
threefolds of torus rank 1 and 2.Comment: 56 pages; v2: multiple updates and clarification in response to
detailed referee's comment
The class of the locus of intermediate Jacobians of cubic threefolds
We study the locus of intermediate Jacobians of cubic threefolds within the
moduli space of complex principally polarized abelian fivefolds, and its
generalization to arbitrary genus - the locus of abelian varieties with a
singular odd two-torsion point on the theta divisor. Assuming that this locus
has expected codimension (which we show to be true for genus up to 5), we
compute the class of this locus, and of is closure in the perfect cone toroidal
compactification, in the Chow, homology, and the tautological ring.
We work out the cases of genus up to 5 in detail, obtaining explicit
expressions for the classes of the closures of the locus of products of an
elliptic curve and a hyperelliptic genus 3 curve, in moduli of principally
polarized abelian fourfolds, and of the locus of intermediate Jacobians in
genus 5. In the course of our computation we also deal with various
intersections of boundary divisors of a level toroidal compactification, which
is of independent interest in understanding the cohomology and Chow rings of
the moduli spaces.Comment: v2: new section 9 on the geometry of the boundary of the locus of
intermediate Jacobians of cubic threefolds. Final version to appear in
Invent. Mat