5 research outputs found

    Comparison of the frequency and phenotypic profile of Mycobacterium tuberculosis-specific CD4 T cells between the site of disease and blood in pericardial tuberculosis

    Get PDF
    Studies of the immune response at the site of disease in extra-pulmonary tuberculosis (EPTB) disease are scarce. In this study, we compared the cellular profile of Mycobacterium tuberculosis (Mtb)-specific T cells in pericardial fluid and peripheral blood in patients with pericardial TB (PCTB). Whole blood and pericardial fluid (PCF) samples were collected at the time of diagnostic sampling, with repeat blood sampling after completion of anti-tubercular treatment (ATT) in 16 PCTB patients, most of them being HIV-1 infected (n=14). These samples were stimulated ex vivo and the phenotypic and functional cellular profile of PCF and blood was assessed by flow cytometry. We found that lymphocytes were the predominant cell type in PCF in PCTB, with a preferential influx of CD4 T cells. The frequencies of TNF-Ī± producing Mtb-specific granulocytes and Mtb-specific CD4 T cells were significantly higher in PCF compared to blood. Mtb-specific CD4 T cells in PCF exhibited a distinct phenotype compared to those in blood, with greater GrB expression and lower CD27 and KLRG1 expression. We observed no difference in the production IFNĪ³, TNF or IL-2 by Mtb-specific CD4 T cells between the two compartments, but MIP-1Ī² production was lower in the PCF T cells. Bacterial loads were not associated with alterations in the phenotype or function of Mtb-specific CD4 T cells. Upon ATT completion, HLA-DR, Ki-67 and GrB expression was significantly decreased, and relative IL-2 production was increased in peripheral Mtb-specific CD4 T cells. Overall, using an ex vivo assay to compare the immune response towards Mtb in PCF and in blood, we identified significant difference in the phenotypic profile of Mtb-specific CD4 T response between these two compartments. Moreover, we show that the activation profile of peripheral Mtb-specific CD4 T cells could be used to monitor treatment response in PCTB

    Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa

    Get PDF
    Few studies from Africa have described the clinical impact of co-infections on SARS-CoV-2 infection. Here, we investigate the presentation and outcome of SARS-CoV-2 infection in an African setting of high HIV-1 and tuberculosis prevalence by an observational case cohort of SARS-CoV-2 patients. A comparator group of non SARS-CoV-2 participants is included. The study includes 104 adults with SARS-CoV-2 infection of whom 29.8% are HIV-1 co-infected. Two or more co-morbidities are present in 57.7% of participants, including HIV-1 (30%) and active tuberculosis (14%). Amongst patients dually infected by tuberculosis and SARS-CoV-2, clinical features can be typical of either SARS-CoV-2 or tuberculosis: lymphopenia is exacerbated, and some markers of inflammation (D-dimer and ferritin) are further elevated (p < 0.05). Amongst HIV-1 co-infected participants those with low CD4 percentage strata exhibit reduced total, but not neutralising, anti-SARS-CoV-2 antibodies. SARS-CoV-2 specific CD8 T cell responses are present in 35.8% participants overall but undetectable in combined HIV-1 and tuberculosis. Death occurred in 30/104 (29%) of all COVID-19 patients and in 6/15 (40%) of patients with coincident SARS-CoV-2 and tuberculosis. This shows that in a high incidence setting, tuberculosis is a common co-morbidity in patients admitted to hospital with COVID-19. The immune response to SARS-CoV-2 is adversely affected by co-existent HIV-1 and tuberculosis

    Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis

    No full text
    Recent data from mice and non-human primate models of tuberculosis suggested that CD153, a TNF super family member, plays an important role in Mycobacterium tuberculosis (Mtb) control. However, this molecule has not been comprehensively evaluated in humans. Here, we show that the proportion of Mtb-specific CD4 T cells expressing CD153 was significantly reduced in active TB patients compared to latently infected persons. Importantly, the CD153+ Mtb-specific CD4 response inversely correlated with lung bacterial load, inferred by Xpert cycle threshold, irrespective of HIV status. Antitubercular treatment partially restored CD153 expression on Mtb-specific CD4 T cells. This is the first report of a subset of Mtb-specific CD4 T cells showing strong negative correlation with bacterial burden. Building on substantial evidence from animal models implicating CD153 as a mediator of host protection, our findings suggest it may play a similar role in humans and its measurement may be useful to evaluate TB vaccine efficacy

    Disease extent and antiā€tubercular treatment response correlates with Mycobacterium tuberculosis ā€specific CD4 Tā€cell phenotype regardless of HIVā€1 status

    No full text
    Objectives The development of nonā€sputumā€based assays for tuberculosis (TB) diagnosis and treatment monitoring is a key priority. Recent data indicate that whole bloodā€based assays to assess the phenotype of Mycobacterium tuberculosis (Mtb)ā€specific CD4 T cells hold promise for this purpose and require further investigation in wellā€characterised TB cohorts. In this study, we investigated the relationship between the phenotypic signature of Mtbā€specific CD4 responses, TB disease extent and treatment response. Methods Using flow cytometry, we measured the expression of phenotypic and functional markers (HLAā€DR, CD27, CD153, KLRG1, ILā€2, MIPā€1Ī², TNFā€Ī± and IFNā€Ī³) on Mtbā€specific CD4 Tā€cells in whole blood from 161 participants of varying TB and HIV status. TB disease extent was graded as a continuum using the Xpertct value, Cā€reactive protein, Timika radiographic score and monocyte/lymphocyte ratio. Results The phenotypic profile of Mtbā€specific CD4 T cells preā€antiā€tubercular treatment (ATT) strongly correlated with disease extent, irrespective of HIV status. ATT associated with major changes in the phenotype of Mtbā€specific CD4 T cells, with decreased expression of HLAā€DR and increased CD27 and CD153 expression. Principal component analysis showed an almost complete separation between latent TB infection (LTBI) and active TB (aTB) preā€ATT groups, whereas the profile of the aTB postā€ATT group overlapped with the LTBI group. However, in patients experiencing treatment failure or relapse, no significant changes were observed in Mtbā€specific CD4 Tā€cell phenotype preā€ and postā€ATT. Conclusion Whole bloodā€based assays of Mtbā€specific CD4 Tā€cell activation and maturation markers can be used as nonā€sputumā€based biomarkers of disease extent and treatment monitoring in TB, regardless of HIVā€1 status

    Communicable and non-communicable co-morbidities and the presentation of COVID-19 in an African setting of high HIV-1 and tuberculosis prevalence

    No full text
    Objectives To describe the presentation and outcome of SARS-CoV2 infection in an African setting of high non-communicable co-morbidity and also HIV-1 and tuberculosis prevalence. Design Case control analysis with cases stratified by HIV-1 and tuberculosis status. Setting A single-centre observational case-control study of adults admitted to a South African hospital with proven SARS-CoV-2 infection or alternative diagnosis. Participants 104 adults with RT-PCR-proven SARS-CoV2 infection of which 55 (52.9%) were male and 31 (29.8%) HIV-1 co-infected. 40 adults (35.7% male, 30.9% HIV-1 co-infected) admitted during the same period with no RT-PCR or serological evidence of SARS-CoV2 infection and assigned alternative diagnoses. Additional in vitro data from prior studies of 72 healthy controls and 118 HIV-1 uninfected and infected persons participants enrolled to a prior study with either immune evidence of tuberculosis sensitization but no symptoms or microbiologically confirmed pulmonary tuberculosis. Results Two or more co-morbidities were present in 57.7% of 104 RT-PCR proven COVID-19 presentations, the commonest being hypertension (48%), type 2 diabetes mellitus (39%), obesity (31%) but also HIV-1 (30%) and active tuberculosis (14%). Amongst patients dually infected by tuberculosis and SARS-CoV-2, clinical features could be dominated by either SARS-CoV-2 or tuberculosis: lymphopenia was exacerbated, and some markers of inflammation (D-dimer and ferritin) elevated in singly SARS-CoV-2 infected patients were even further elevated (p < 0.05). HIV-1 and SARS-CoV2 co-infection resulted in lower absolute number and proportion of CD4 lymphocytes, with those in the lowest peripheral CD4 percentage strata exhibiting absent or lower antibody responses against SARS-CoV2. Death occurred in 30/104 (29%) of all COVID-19 patients and in 6/15 (40%) of patients with coincident SARS-CoV-2 and tuberculosis. Conclusions In this South African setting, HIV-1 and tuberculosis are common co-morbidities in patients presenting with COVID-19. In environments in which tuberculosis is common, SARS-CoV-2 and tuberculosis may co-exist with clinical presentation being typical of either disease. Clinical suspicion of exacerbation of co-existent tuberculosis accompanying SARS-CoV-2 should be high. What is already known on this topic?It has been quite widely thought that Africa has been spared the worst effects of the COVID-19 pandemic. There are very few reported case series and no case-control studies comparing COVID-19 patients admitted to hospital to those admitted for other reasons. However several studies have indicated both HIV-1 and tuberculosis co-infection that are endemic in Africa constitute risk factors for poor outcome. In addition Africa is subject to demographic transition and the prevalence of non-communicable co-morbidities such as type 2 diabetes, hypertension and cardiovascular disease is rising rapidly. No study from Africa has described the clinical impact on the presentation of COVID-19 infection. What this study adds Two or more co-morbidities were present in over half COVID-19 presentations, including HIV-1 (30%) and active tuberculosis (14%). Patients dually infected by tuberculosis and SARS-CoV-2, presented as either SARS-CoV-2 or tuberculosis. HIV-1 and SARS-CoV2 co-infection resulted in lower absolute number and proportion of CD4 lymphocytes, and those with low CD4 counts had absent or lower antibody responses against SARS-CoV2. Death occurred 29% of all COVID-19 patients and in 40% of patients with coincident SARS-CoV-2 and tuberculosis. Thus in environments in which tuberculosis is common, SARS-CoV-2 and tuberculosis may co-exist with clinical presentation being typical of either disease and clinical suspicion of exacerbation of co-existent tuberculosis accompanying SARS-CoV-2 should be high. Competing Interest Statement The authors have declared no competing interest. Funding Statement This research was funded in whole, or in part, by Wellcome [104803, 203135, 222754]. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. RJW was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC0010218), the UK Medical Research Council (FC0010218), and Wellcome (FC0010218)
    corecore