33 research outputs found
Modeling the effects of a light bridge on properties of magnetohydrodynamic waves in solar pores
Solar pores are ideal magnetic structures for wave propagation and transport of energy radially outwards across the upper layers of the solar atmosphere. We aim to model the excitation and propagation of magnetohydrodynamic waves in a pore with a light bridge modeled as two interacting magnetic flux tubes separated by a thin, weaker-field layer. We solve the three-dimensional magnetohydrodynamic equations numerically and calculate the circulation as a measure of net torsional motion. We find that the interaction between flux tubes results in the natural excitation of propagating torsional Alfvén waves but find no torsional waves in the model with a single flux tube. The torsional Alfvén waves propagate with wave speeds matching the local Alfvén speed where wave amplitude peaks
The structure of a major surface antigen SAG19 from Eimeria tenella unifies the Eimeria SAG family
In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αÎČα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed
Identification of a Key Amino Acid of LuxS Involved in AI-2 Production in Campylobacter jejuni
Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2â variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a âŒ100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter
A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A
The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1
Cloning, purification, crystallization and preliminary crystallographic analysis of Bacillus subtilis LuxS
LuxS of Bacillus subtilis is a member of a novel family of proteins with a potential role in quorum sensing, controlling important aspects of cellular physiology in a range of microbial species. B. subtilis luxS was cloned, expressed in Escherichia coli, purified and crystallized using the hanging-drop method of vapour diffusion with ammonium sulfate as the precipitant. The crystals belong to one of the enantiomorphic space groups P6<SUB>1</SUB>22 or P6<SUB>5</SUB>22, with approximate unit-cell parameters α = b = 63.6, c = 151.5 Ă
and one subunit in the asymmetric unit, corresponding to a packing density of 2.5 Ă
<SUP>3</SUP> Da<SUP>-1</SUP>. The crystals diffract X-rays to at least 1.55 Ă
resolution on a synchrotron-radiation source. Determination of the structure will provide insights into the key determinants of function of this class of proteins, for which no structures are currently available
Purification, crystallization and quaternary structure analysis of a glycerol dehydrogenase S305C mutant from Bacillus stearothermophilus
Bacillus stearothermophilus glycerol dehydrogenase (GlyDH) is a 39.5 kDa molecular weight metalloenzyme which catalyzes the oxidation of glycerol to dihydroxyacetone with the concomitant reduction of NAD+ to NADH. Despite its classification as a member of the 'iron-containing' polyol dehydrogenase family, studies on recombinant B. stearothermophilus GlyDH have shown this enzyme to be Zn2+-dependent. Crystals of a S305C GlyDH mutant were obtained by the hanging-drop vapour-diffusion method, using ammonium sulfate and PEG 400 as precipitating agents, in the presence and absence of NAD+. The crystals belong to space group I422, with approximate unit-cell parameters a = b = 105, c = 149 Ă
and one subunit in the asymmetric unit, corresponding to a packing density of 2.6 Ă
3 Da-1. The crystals diffract X-rays to at least 1.8 Ă
resolution on a synchrotron-radiation source. Determination of the structure will provide insights into the key determinations of catalytic activity of this class of enzymes, for which no structures are currently available