24 research outputs found
A New Dietary Fiber Can Enhance Satiety and Reduce Postprandial Blood Glucose in Healthy Adults: A Randomized Cross-Over Trial
BACKGROUND: Dietary fiber plays a potential role in regulating energy intake and stabilizing postprandial blood glucose levels. Soluble dietary fiber has become an important entry point for nutritional research on the regulation of satiety.
METHODS: this was a double-blind, randomized cross-over trial enrolling 12 healthy subjects to compare the effects of RPG (R+PolyGly) dietary fiber products (bread, powder, and capsule) and pectin administered with a standard meal on satiety, blood glucose, and serum insulin level.
RESULTS: Adding 3.8% RPG dietary fiber to bread significantly increased the volume, water content, hardness, and chewiness of bread compared to 3.8% pectin bread and white bread and significantly improved the sensory quality of bread. RPG bread had better appetite suppression effects at some time points than the other two groups and the best postprandial blood glucose lowering effects among the three groups. Administration of RPG capsules containing 5.6 g of RPG dietary fiber with meals improved satiety and reduced hunger compared to 6 g of RPG powder and 6 g of pectin, which had the greatest effect on suppressing appetite and reducing prospective food consumption. The peak level of serum glucagon-like peptide-1 (GLP-1) in the RPG capsule group (578.17 ± 19.93 pg/mL) was significantly higher than that in other groups at 0 min and 30 min after eating. RPG powder had the best effect in reducing postprandial blood glucose and increasing serum insulin levels; the total area under the curve (AUC) of serum insulin with RPG powder was higher than other groups (5960 ± 252.46 μU min/mL).
CONCLUSION: RPG dietary fiber products can improve the sensory properties of food, reduce postprandial blood glucose, and enhance satiety, especially in capsule and powder forms. Further research on the physiological effects of RPG dietary fiber is required to facilitate its use as a functional ingredient in food products
Trem-1, Trem-2 and Their Association With Disease Severity in Patients With COVID-19
BACKGROUND: Delayed diagnosis and inadequate treatment caused by limited biomarkers are associated with the outcomes of COVID-19 patients. It is necessary to identify other promising biomarkers and candidate targets for defining dysregulated inflammatory states.
METHODS: The triggering receptors expressed on myeloid cell (TREM)-1 and TREM-2 expression from hospitalized COVID-19 patients were characterized using ELISA and flow cytometry, respectively. Their correlation with disease severity and contrast with the main clinical indicators were evaluated.
RESULTS: Increased expression of soluble TREM-1 and TREM-2 in the plasma of COVID-19 patients was found compared to the control group. Moreover, membrane-bound TREM-1 and TREM-2 expression was upregulated on the cell surface of circulating blood T cells from COVID-19 patients. Correlation analysis showed that sTREM-2 levels were negatively correlated with PaO
CONCLUSION: TREM-2 and TREM-1 are critical host immune factors that response to SARS-COV-2 infection and could serve as potential diagnostic biomarkers and therapeutic targets for COVID-19
Nitroxoline suppresses metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway
Bladder cancer is one of the most common and deadly cancer worldwide. Current chemotherapy has shown limited efficacy in improving outcomes for patients. Nitroxoline, an old and widely used oral antibiotic, which was known to treat for urinary tract infection for decades. Recent studies suggested that nitroxoline suppressed the tumor progression and metastasis, especially in bladder cancer. However, the underlying mechanism for anti-tumor activity of nitroxoline remains unclear. Methods: CircRNA microarray was used to explore the nitroxoline-mediated circRNA expression profile of bladder cancer lines. Transwell and wound-healing assay were applied to evaluate the capacity of metastasis. ChIP assay was chosen to prove the binding of promotor and transcription factor. RNA-pulldown assay was performed to explore the sponge of circRNA and microRNA. Results: We first identified the circNDRG1 (has_circ_0085656) as a novel candidate circRNA. Transwell and wound-healing assay demonstrated that circNDRG1 inhibited the metastasis of bladder cancer. ChIP assay showed that circNDRG1 was regulated by the transcription factor EGR1 by binding the promotor of host gene NDRG1. RNA-pulldown assay proved that circNDRG1 sponged miR-520h leading to the overexpression of smad7, which was a negative regulatory protein of EMT. Conclusions: Our research revealed that nitroxoline may suppress metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway
Transcriptome Analysis Reveals Gene Expression Changes during Repair from Mechanical Wounding in Aquilaria sinensis
Plants repair their mechanical wounds by reprogramming secondary metabolism. However, which genes are reprogrammed during this repair process in Aquilaria sinensis has rarely been studied. Here, we used high-throughput RNA sequencing to explore the changes in the transcriptome of Aquilaria’s xylem, six months after the stem was subjected to mechanical wounding. In total, 1165 transcripts were differentially accumulated, of which 1002 transcripts were increased and 163 were decreased in their abundances (|log2 (fold change)| ≥ 1 and FDR ≤ 0.05). The majority of these genes encode products involved in plant secondary metabolism, transcription regulation, and phytohormone metabolism and signaling. The up-regulated genes were classified into 15 significantly enriched GO terms and were involved in 83 pathways, whereas the down-regulated genes were classified into 5 significantly enriched GO terms and represented 43 pathways. Gene annotation demonstrated that 100 transcripts could encode transcription factors (TFs), such as WRKY, AP2, MYB, and Helix-loop-helix (HLH) TFs. We inferred that the differential expression of TFs, genes associated with plant hormones, phenylpropanoid biosynthesis, and sesquiterpenoid biosynthesis may contribute to the repair of the stem after mechanical wounding in A. sinensis. Using co-expression analysis and prediction of TF binding sites, a TF–gene regulatory network for Aquilaria lignin biosynthesis was constructed. This included the MYB, HLH, WRKY, and AP2 TFs, and the COMT1, 4CLL7, and CCR1 genes. The changes in 10 candidate genes were validated by quantitative reverse-transcription PCR, indicating significant differences between the treated and untreated areas. Our study provides global gene expression patterns under mechanical wounding and would be valuable to further studies on the molecular mechanisms of plant repair in A. sinensis
Transcriptome Analysis Reveals Gene Expression Changes during Repair from Mechanical Wounding in <i>Aquilaria sinensis</i>
Plants repair their mechanical wounds by reprogramming secondary metabolism. However, which genes are reprogrammed during this repair process in Aquilaria sinensis has rarely been studied. Here, we used high-throughput RNA sequencing to explore the changes in the transcriptome of Aquilaria’s xylem, six months after the stem was subjected to mechanical wounding. In total, 1165 transcripts were differentially accumulated, of which 1002 transcripts were increased and 163 were decreased in their abundances (|log2 (fold change)| ≥ 1 and FDR ≤ 0.05). The majority of these genes encode products involved in plant secondary metabolism, transcription regulation, and phytohormone metabolism and signaling. The up-regulated genes were classified into 15 significantly enriched GO terms and were involved in 83 pathways, whereas the down-regulated genes were classified into 5 significantly enriched GO terms and represented 43 pathways. Gene annotation demonstrated that 100 transcripts could encode transcription factors (TFs), such as WRKY, AP2, MYB, and Helix-loop-helix (HLH) TFs. We inferred that the differential expression of TFs, genes associated with plant hormones, phenylpropanoid biosynthesis, and sesquiterpenoid biosynthesis may contribute to the repair of the stem after mechanical wounding in A. sinensis. Using co-expression analysis and prediction of TF binding sites, a TF–gene regulatory network for Aquilaria lignin biosynthesis was constructed. This included the MYB, HLH, WRKY, and AP2 TFs, and the COMT1, 4CLL7, and CCR1 genes. The changes in 10 candidate genes were validated by quantitative reverse-transcription PCR, indicating significant differences between the treated and untreated areas. Our study provides global gene expression patterns under mechanical wounding and would be valuable to further studies on the molecular mechanisms of plant repair in A. sinensis
Achieving Equiaxed Transition and Excellent Mechanical Properties in a Novel Near-β Titanium Alloy by Regulating the Volume Energy Density of Selective Laser Melting
This research investigated the relationship between volume energy density and the microstructure, density, and mechanical properties of the Ti-5Al-5Mo-3V-1Cr-1Fe alloy fabricated via the SLM process. The results indicate that an increase in volume energy density can promote a transition from a columnar to an equiaxed grain structure and suppress the anisotropy of mechanical properties. Specifically, at a volume energy density of 83.33 J/mm3, the average aspect ratio of β grains reached 0.77, accompanied by the formation of numerous nano-precipitated phases. Furthermore, the relative density of the alloy initially increased and then decreased as the volume energy density increased. At a volume energy density of 83.33 J/mm3, the relative density reached 99.6%. It is noteworthy that an increase in volume energy density increases the β grain size. Consequently, with a volume energy density of 83.33 J/mm3, the alloy exhibited an average grain size of 63.92 μm, demonstrating optimal performance with a yield strength of 1003.06 MPa and an elongation of 18.16%. This is mainly attributable to the fact that an increase in volume energy density enhances thermal convection within the molten pool, leading to alterations in molten pool morphology and a reduction in temperature gradients within the alloy. The reduction in temperature gradients promotes equiaxed grain transformation and grain refinement by increasing constitutive supercooling at the leading edge of the solid–liquid interface. The evolution of molten pool morphology mainly inhibits columnar grain growth and refines grain by changing the grain growth direction. This study provided a straightforward method for inhibiting anisotropy and enhancing mechanical properties
Gut Microbiota Perturbation in Early Life Could Influence Pediatric Blood Pressure Regulation in a Sex-Dependent Manner in Juvenile Rats
The present study aimed to investigate whether gut dysbiosis induced by ceftriaxone in early life could influence pediatric blood pressure regulation in childhood with or without exposure to a high-fat diet (HFD). Sixty-three newborn pups of Sprague-Dawley rats were administered ceftriaxone sodium or saline solution until weaning at 3 weeks, and the rats were fed a HFD or regular diet from 3 to 6 weeks. Tail-cuff blood pressure, the expression levels of genes of the renin-angiotensin system (RAS), the concentrations of IL-1β, IL-6, and TNF-α in the colon and prefrontal cortex, and the composition of fecal microbiota were analyzed. Ceftriaxone treatment significantly increased the diastolic blood pressure of male rats at 3 weeks. At 6 weeks, systolic blood pressure (SBP) was significantly increased only in ceftriaxone treated male rats fed with HFD. The RAS showed increased activation in the kidney, heart, hypothalamus, and thoracic and abdominal aorta of male rats, but only in the kidney, heart, and hypothalamus of female rats. HFD-fed female rats showed a decreased level of IL-6 in the colon. α diversity of gut microbiota decreased and the Firmicutes to Bacteroidetes ratio increased in both male and female rats at 3 weeks; however, these parameters recovered to various degrees in female rats at 6 weeks. These results revealed that early-life gut dysbiosis induced by antibiotics combined with a HFD in childhood could be involved in pediatric blood pressure regulation and an increase in SBP in juvenile rats, and these effects occurred in a sex-dependent manner
Role of noncoding RNA in drug resistance of prostate cancer
Abstract Prostate cancer is one of the most prevalent forms of cancer around the world. Androgen-deprivation treatment and chemotherapy are the curative approaches used to suppress prostate cancer progression. However, drug resistance is extensively and hard to overcome even though remarkable progress has been made in recent decades. Noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, are a group of cellular RNAs which participate in various cellular processes and diseases. Recently, accumulating evidence has highlighted the vital role of non-coding RNA in the development of drug resistance in prostate cancer. In this review, we summarize the important roles of these three classes of noncoding RNA in drug resistance and the potential therapeutic applications in this disease
Bioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatment
The treatment of diabetic chronic wounds remains a global challenge due to the up-regulated inflammation response, oxidant stress, and persistent infection during healing process. Developing wound dressing materials with ideal biocompatibility, adequate mechanical strength, considerable under-water adhesion, sufficient anti-inflammation, antioxidant, and antibacterial properties is on-demand for clinical applications. In this study, we developed a bioactive skin-mimicking hydrogel band-aid through the combination of tannic acid (TA) and imidazolidinyl urea reinforced polyurethane (PMI) (TAP hydrogel) and explored its potentials in various medical applications, including hemostasis, normal skin incision, full-thickness skin wounds, and bacterial-infection skin incision on diabetic mice. TA was loaded into PMI hydrogel network to enhance the mechanical properties of TAP hydrogels through multiple non-covalent interactions (break strength: 0.28–0.64 MPa; elongation at break: 650–930%), which could resist the local stress and maintain the structural integrity of wound dressings during applications. Moreover, owing to the promising moisture-resistant adhesiveness and organ hemostasis, outstanding anti-inflammation, antibacterial, and antioxidant properties, TAP hydrogels could efficiently promote the recovery of skin incision and defects on diabetic mice. To further simulate the practical situation and explore the potential in clinical application, we also verified the treatment efficiency of TAP hydrogel in S. aureus-infected skin incision model on diabetic mice