22 research outputs found

    Spectral linewidth analysis of semiconductor hybrid lasers with feedback from an external waveguide resonator circuit

    Get PDF
    We present a detailed analysis of a semiconductor hybrid laser exploiting spectral control from an external photonic waveguide circuit that provides frequency-selective feedback. Based on a spatially resolved transmission line model (TLM), we have investigated the output power, emission frequency, and the laser spectral linewidth. We find that, if the feedback becomes weaker, the spectral linewidth is larger than predicted by previous models that are based on a modified mean-field approximation, even if these take a strong spatial variation of the gain into account. The observed excess linewidth is caused by additional index fluctuations that are associated with strong spatial gain variations

    Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser

    Get PDF
    Extending the cavity length of diode lasers with feedback from Bragg structures and ring resonators is highly effective for obtaining ultra-narrow laser linewidths. However, cavity length extension also decreases the free-spectral range of the cavity. This reduces the wavelength range of continuous laser tuning that can be achieved with a given phase shift of an intracavity phase tuning element. We present a method that increases the range of continuous tuning to that of a short equivalent laser cavity, while maintaining the ultra-narrow linewidth of a long cavity. Using a single-frequency hybrid integrated InP-Si3N4 diode laser with 120 nm coverage around 1540 nm, with a maximum output of 24 mW and lowest intrinsic linewidth of 2.2 kHz, we demonstrate a six-fold increased continuous and mode-hop-free tuning range of 0.22 nm (28 GHz) as compared to the free-spectral range of the laser cavity.Comment: 12 pages, 7 figure

    Ultra-narrow linewidth hybrid integrated semiconductor laser

    Get PDF
    We demonstrate a hybrid integrated and widely tunable diode laser with an intrinsic linewidth as narrow as 40 Hz, achieved with a single roundtrip through a low-loss feedback circuit that extends the cavity length to 0.5 meter on a chip. Employing solely dielectrics for single-roundtrip, single-mode resolved feedback filtering enables linewidth narrowing with increasing laser power, without limitations through nonlinear loss. We achieve single-frequency oscillation with up to 23 mW fiber coupled output power, 70-nm wide spectral coverage in the 1.55 ÎĽ\mum wavelength range with 3 mW output, and obtain more than 60 dB side mode suppression. Such properties and options for further linewidth narrowing render the approach of high interest for direct integration in photonic circuits serving microwave photonics, coherent communications, sensing and metrology with highest resolution.Comment: 13 pages, and 11 figure

    Narrow linewidth hybrid InP-TriPleX photonic integrated tunable laser based on silicon nitride micro-ring resonators

    Get PDF
    Detailed characterization of a hybrid integrated tunable laser based on micro-ring resonators shows a tuning range of 50 nm with ~40 kHz linewidth. The device demonstrates performance comparable with commercial external cavity lasers in 16QAM coherent system

    Hybrid integrated semiconductor lasers with silicon nitride feedback circuits

    Get PDF
    Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth as well as compatibility for embedding into integrated photonic circuits are of high importance for a wide range of applications. We present an overview on our recently developed hybrid-integrated diode lasers with feedback from low-loss silicon nitride (Si3N4 in SiO2) circuits, to provide sub-100-Hz-level intrinsic linewidths, up to 120 nm spectral coverage around 1.55 um wavelength, and an output power above 100 mW. We show dual-wavelength operation, dual-gain operation, laser frequency comb generation, and present work towards realizing a visible-light hybrid integrated diode laser.Comment: 25 pages, 16 figure

    Integrated-optics-based external-cavity laser configured for mode-hop-free wavelength tuning

    No full text
    Aspects of the present disclosure describe systems, methods and structures including an integrated-optics-based externa-cavity laser configured for mode-hop-free wavelength tuning having an increased continuous tuning range with an ultra-narrow linewidth by increasing tuning sensitivity. Ultra-narrow linewidth is provided by extending cavity length with a multi-pass resonator based filter that may advantageously include tunable microring resonators that enable single-mode oscillation while contributing to the optical length of the laser with multiple passes of light through the ring (s) per roundtrip in the laser cavity. Further aspects of the present disclosure describe systems, methods, and structures exhibiting an enhanced “tuning sensitivity”—defined by a continuous wavelength shift per induced cavity phase shift by a phase section. Such tuning sensitivity is increased by approximately a factor of 3 for synchronous

    290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser

    No full text
    We present an integrated chip-based InP-Si3N4 hybrid laser with unprecedented high spectral-purity. A record-narrow intrinsic laser linewidth of 290 Hz with a widest-ever spectral coverage (81 nm at 1550 nm) is experimentally demonstrated

    Analog IFoF/mmWave 5G Optical Fronthaul Architecture for Hot-Spots Using Multi-channel OFDM-Based WDM Signals

    No full text
    Part 2: Poster PapersInternational audienceAn analog Intermediate-Frequency-over-Fiber (IFoF) – based fronthaul 5G architecture for high traffic hot-spot environments is presented. The proposed optical fronthaul link utilizes Photonic Integrated Circuit (PIC) Wavelength Division Multiplexing (WDM) Externally Modulated Laser (EML) - based optical transmitters at a centralized Base Band Unit (BBU) and Reconfigurable Optical Add-Drop Multiplexers (ROADMs) at the Remote Radio Head (RRH) side located in the hot-spot area. By employing two WDM links, where each wavelength carries six 0.5 Gbaud IF bands of Orthogonal Frequency Division Multiplexing (OFDM) with 16 – QAM Sub-Carrier (SC) modulation, a total data rate of 96 Gb/s was achieved. Error Vector Magnitude (EVM) measurements were carried out, exhibiting acceptable performance below the EVM FEC limit of 12.5%. A power budget study was also performed, suggesting up to 9.5 km fiber lengths between the BBU and the hot-spot network. The proposed architecture complies with the high capacity and low latency requirements of the 5G vision, thus may be an efficient solution for 5G fronthauling of heavy traffic hot-spot areas

    A 5G C-RAN Optical Fronthaul Architecture for Hotspot Areas Using OFDM-Based Analog IFoF Waveforms

    No full text
    Analog fronthauling is currently promoted as a bandwidth and energy-efficient solution that can meet the requirements of the Fifth Generation (5G) vision for low latency, high data rates and energy efficiency. In this paper, we propose an analog optical fronthaul 5G architecture, fully aligned with the emerging Centralized-Radio Access Network (C-RAN) concept. The proposed architecture exploits the wavelength division multiplexing (WDM) technique and multicarrier intermediate-frequency-over-fiber (IFoF) signal generation per wavelength in order to satisfy the demanding needs of hotspot areas. Particularly, the fronthaul link employs photonic integrated circuit (PIC)-based WDM optical transmitters (Txs) at the baseband unit (BBU), while novel reconfigurable optical add-drop multiplexers (ROADMs) cascaded in an optical bus are used at the remote radio head (RRH) site, to facilitate reconfigurable wavelength switching functionalities up to 4 wavelengths. An aggregate capacity of 96 Gb/s has been reported by exploiting two WDM links carrying multi-IF band orthogonal frequency division multiplexing (OFDM) signals at a baud rate of 0.5 Gbd with sub-carrier (SC) modulation of 64-QAM. All signals exhibited error vector magnitude (EVM) values within the acceptable 3rd Generation Partnership Project (3GPP) limits of 8%. The longest reach to place the BBU away from the hotspot was also investigated, revealing acceptable EVM performance for fiber lengths up to 4.8 km
    corecore