60 research outputs found
The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations
The Very high Angular resolution ULtraviolet Telescope (VAULT) is a sounding
rocket payload built to study the crucial interface between the solar
chromosphere and the corona by observing the strongest line in the solar
spectrum, the Ly-a line at 1216 {\AA}. In two flights, VAULT succeeded in
obtaining the first ever sub-arcsecond (0.5") images of this region with high
sensitivity and cadence. Detailed analyses of those observations have
contributed significantly to new ideas about the nature of the transition
region. Here, we present a broad overview of the Ly-a atmosphere as revealed by
the VAULT observations, and bring together past results and new analyses from
the second VAULT flight to create a synthesis of our current knowledge of the
high-resolution Ly-a Sun. We hope that this work will serve as a good reference
for the design of upcoming Ly-a telescopes and observing plans.Comment: 28 pages, 11 figure
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Limb Spicules from the Ground and from Space
We amassed statistics for quiet-sun chromosphere spicules at the limb using
ground-based observations from the Swedish 1-m Solar Telescope on La Palma and
simultaneously from NASA's Transition Region and Coronal Explorer (TRACE)
spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond
resolution obtained after maximizing the ground-based resolution with the
Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained
specific statistics for sizes and motions of over two dozen individual
spicules, based on movies compiled at 50-second cadence for the series of five
wavelengths observed in a very narrow band at H-alpha, on-band and in the red
and blue wings at 0.035 nm and 0.070 nm (10 s at each wavelength) using the
SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from
TRACE. The MOMFBD restoration also automatically aligned the images,
facilitating the making of Dopplergrams at each off-band pair. We studied 40
H-alpha spicules, and 14 EUV spicules that overlapped H-alpha spicules; we
found that their dynamical and morphological properties fit into the framework
of several previous studies. From a preliminary comparison with spicule
theories, our observations are consistent with a reconnection mechanism for
spicule generation, and with UV spicules being a sheath region surrounding the
H-alpha spicules
Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses
Development of effective preventative interventions against SARS-CoV-2, the etiologic agent of COVID-19 is urgently needed. The viral surface spike (S) protein of SARS-CoV-2 is a key target for prophylactic measures as it is critical for the viral replication cycle and the primary target of neutralizing antibodies. We evaluated design elements previously shown for other coronavirus S protein-based vaccines to be successful, e.g., prefusion-stabilizing substitutions and heterologous signal peptides, for selection of a S-based SARS-CoV-2 vaccine candidate. In vitro characterization demonstrated that the introduction of stabilizing substitutions (i.e., furin cleavage site mutations and two consecutive prolines in the hinge region of S2) increased the ratio of neutralizing versus non-neutralizing antibody binding, suggestive for a prefusion conformation of the S protein. Furthermore, the wild-type signal peptide was best suited for the correct cleavage needed for a natively folded protein. These observations translated into superior immunogenicity in mice where the Ad26 vector encoding for a membrane-bound stabilized S protein with a wild-type signal peptide elicited potent neutralizing humoral immunity and cellular immunity that was polarized towards Th1 IFN-gamma. This optimized Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in a phase I clinical trial (ClinicalTrials.gov Identifier: NCT04436276).Molecular basis of virus replication, viral pathogenesis and antiviral strategie
- …