25 research outputs found
Macrophages promote network formation and maturation of transplanted adipose tissue-derived microvascular fragments
Adipose tissue-derived microvascular fragments rapidly reassemble into microvascular networks within implanted scaffolds. Herein, we analyzed the contribution of macrophages to this process. C57BL/6 mice received clodronate (clo)-containing liposomes for macrophage depletion, whereas animals treated with phosphate-buffered-saline-containing liposomes served as controls. Microvascular fragments were isolated from clo- and phosphate-buffered-saline-treated donor mice and seeded onto collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of clo- and phosphate-buffered-saline-treated recipient mice. The implants' vascularization and incorporation were analyzed by stereomicroscopy, intravital fluorescence microscopy, histology, and immunohistochemistry. Compared to controls, matrices within clo-treated animals exhibited a significantly reduced functional microvessel density. Moreover, they contained a lower fraction of microvessels with an α-smooth muscle actin (SMA)+ cell layer, indicating impaired vessel maturation. This was associated with a deteriorated implant incorporation. These findings demonstrate that macrophages not only promote the reassembly of microvascular fragments into microvascular networks, but also improve their maturation during this process
Vascularization of Microvascular Fragment Isolates from Visceral and Subcutaneous Adipose Tissue of Mice
Background:
Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies in rodents exclusively use epididymal adipose tissue as a visceral fat source for MVF isolation. However, in future clinical practice, MVF may be rather isolated from liposuctioned subcutaneous fat tissue of patients. Therefore, we herein compared the vascularization characteristics of MVF isolates from visceral and subcutaneous fat tissue of murine origin.
Methods:
MVF isolates were generated from visceral and subcutaneous fat tissue of donor mice using two different enzymatic procedures. For in vivo analyses, the MVF isolates were seeded onto collagen-glycosaminoglycan scaffolds and implanted into full-thickness skin defects within dorsal skinfold chambers of recipient mice.
Results:
By means of the two isolation procedures, we isolated a higher number of MVF from visceral fat tissue when compared to subcutaneous fat tissue, while their length distribution, viability and cellular composition were comparable in both groups. Intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a significantly reduced vascularization of implanted scaffolds seeded with subcutaneous MVF isolates when compared to implants seeded with visceral MVF isolates. Light and scanning electron microscopy showed that this was due to high amounts of undigested connective tissue within the subcutaneous MVF isolates, which clogged the scaffold pores and prevented the interconnection of individual MVF into new microvascular networks.
Conclusion:
These findings indicate the need for improved protocols to generate connective tissue-free MVF isolates from subcutaneous fat tissue for future translational studies
Ophthalmology
PURPOSE: To investigate systemic and ocular determinants of peripapillary retinal nerve fiber layer thickness (pRNFLT) in the European population. DESIGN: Cross-sectional meta-analysis. PARTICIPANTS: A total of 16 084 European adults from 8 cohort studies (mean age range, 56.9+/-12.3-82.1+/-4.2 years) of the European Eye Epidemiology (E3) consortium. METHODS: We examined associations with pRNFLT measured by spectral-domain OCT in each study using multivariable linear regression and pooled results using random effects meta-analysis. MAIN OUTCOME MEASURES: Determinants of pRNFLT. RESULTS: Mean pRNFLT ranged from 86.8+/-21.4 mum in the Rotterdam Study I to 104.7+/-12.5 mum in the Rotterdam Study III. We found the following factors to be associated with reduced pRNFLT: Older age (beta = -0.38 mum/year; 95% confidence interval [CI], -0.57 to -0.18), higher intraocular pressure (IOP) (beta = -0.36 mum/mmHg; 95% CI, -0.56 to -0.15), visual impairment (beta = -5.50 mum; 95% CI, -9.37 to -1.64), and history of systemic hypertension (beta = -0.54 mum; 95% CI, -1.01 to -0.07) and stroke (beta = -1.94 mum; 95% CI, -3.17 to -0.72). A suggestive, albeit nonsignificant, association was observed for dementia (beta = -3.11 mum; 95% CI, -6.22 to 0.01). Higher pRNFLT was associated with more hyperopic spherical equivalent (beta = 1.39 mum/diopter; 95% CI, 1.19-1.59) and smoking (beta = 1.53 mum; 95% CI, 1.00-2.06 for current smokers compared with never-smokers). CONCLUSIONS: In addition to previously described determinants such as age and refraction, we found that systemic vascular and neurovascular diseases were associated with reduced pRNFLT. These may be of clinical relevance, especially in glaucoma monitoring of patients with newly occurring vascular comorbidities
Recommended from our members
Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error
Abstract: Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia
Multi-trait genome-wide association study identifies new loci associated with optic disc parameters
A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH
Multi-trait genome-wide association study identifies new loci associated with optic disc parameters.
Funder: All funders per study are acknowledged in the Supplementary FileA new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH
A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration
Background
High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ −6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER.
Methods
The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression.
Findings
In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17–21%), 2% (1–3%), 8% (7–10%) and 6% (3–9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75–0.81), 0.58 (0.53–0.64), 0.71 (0.69–0.74) and 0.67 (0.62–0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92–1.24).
Interpretation
Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted fo
Prevascularization of collagen-glycosaminoglycan scaffolds: stromal vascular fraction versus adipose tissue-derived microvascular fragments
Abstract Background The seeding of scaffolds with the stromal vascular fraction (SVF) of adipose tissue is a common prevascularization strategy in tissue engineering. Alternatively, adipose tissue-derived microvascular fragments (ad-MVF) may serve as vascularization units. In contrast to SVF single cells, they represent a mixture of intact arteriolar, capillary and venular vessel segments. Therefore, we herein hypothesized that the ad-MVF-based prevascularization of scaffolds is superior to the conventional SVF single cells-based approach. Results SVF single cells and ad-MVF were enzymatically isolated from epididymal fat pads of green fluorescent protein (GFP)+ donor mice to assess their viability and cellular composition using fluorescence microscopy and flow cytometry. Moreover, collagen-glycosaminoglycan matrices (Integra®) were seeded with identical amounts of the isolates and implanted into full-thickness skin defects within dorsal skinfold chambers of GFP− recipient mice for the intravital fluorescent microscopic, histological and immunohistochemical analysis of implant vascularization and incorporation throughout an observation period of 2 weeks. Non-seeded matrices served as controls. While both isolates contained a comparable fraction of endothelial cells, perivascular cells, adipocytes and stem cells, ad-MVF exhibited a significantly higher viability. After in vivo implantation, the vascularization of ad-MVF-seeded scaffolds was improved when compared to SVF-seeded ones, as indicated by a significantly higher functional microvessel density. This was associated with an enhanced cellular infiltration, collagen content and density of CD31+/GFP+ microvessels particularly in the center of the implants, demonstrating a better incorporation into the surrounding host tissue. In contrast, non-seeded matrices exhibited a poor vascularization, incorporation and epithelialization over time. Conclusions The present study demonstrates that ad-MVF are highly potent vascularization units that markedly accelerate and improve scaffold vascularization when compared to the SVF
Endothelial Progenitor Cells Contribute to the Vascularization of Endometriotic Lesions
Endometriosis is a frequent gynecological disease that is characterized by the development of vascularized endometriotic lesions inside the peritoneal cavity. Herein, we analyzed whether circulating endothelial progenitor cells (EPCs) are recruited and incorporated into the microvasculature of these lesions. Intraperitoneal endometriotic lesions were surgically induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein [GFP]) 287 Sato mice. Vascularization and recruitment of GFP-positive EPCs in the lesions was analyzed by intravital fluorescence microscopy and immunohistochemistry over 4 weeks. The numbers of stem cell antigen-1 (Sca-1)/vascular endothelial growth factor receptor-2–positive EPCs in blood and hematopoietic organs of additional endometriotic and control mice were assessed by flow cytometry. We found that approximately 15% of the microvascular endothelium in engrafting endometriotic lesions consisted of incorporated GFP-positive EPCs. Recruitment of EPCs into the lesions coincided with the establishment of own blood supply and the expression of stromal cell–derived factor-1. Accordingly, treatment with the stromal cell–derived factor-1/chemokine receptor type 4 axis antagonist AMD3100 significantly decreased the number of recruited EPCs and the vascularization of endometriotic lesions. However, endometriosis did not induce increased levels of EPCs in the blood, bone marrow, and spleen of C57BL/6 mice. To our knowledge, our findings indicate for the first time that vasculogenesis (ie, de novo generation of blood vessels from EPCs) may represent an integral mechanism in the pathogenesis of endometriosis