31 research outputs found

    Basic Research Program of China (2005CB522901) and the National Natural Science Foundation of China

    Get PDF
    We have previously shown that Toll-like receptor (TLR)-activated murine nonparenchymal liver cells [(NPC); Kupffer cells (KC), liver sinusoidal endothelial cells (LSEC) ] T he hepatitis B virus (HBV) is a hepatotropic DNA virus that can lead to chronic hepatitis, which can be complicated by the development of liver cirrhosis and hepatocellular carcinoma. Current approved therapeutic strategies for treatment HBV include interferon-alpha (IFN-␣) and nucleoside and nucleotide analogs. 1,2 However, only a minority of patients that are treated with these agents show a long-term sustained response with "eradication" [for example, hepatitis B surface antigen (HBsAg) loss] of the virus

    All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells

    Get PDF
    BACKGROUND & AIMS: Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. METHODS: Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. RESULTS: Cell preparation yielded the following cell counts per gram of liver tissue: 2.0+/-0.4x107 hepatocytes, 1.8+/-0.5x106 Kupffer cells, 4.3+/-1.9x105 liver sinusoidal endothelial cells, and 3.2+/-0.5x105 stellate cells. Hepatocytes were identified by albumin (95.5+/-1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5+/-1.2%) and exhibited phagocytic activity, as determined with 1mum latex beads. Endothelial cells were CD146+ (97.8+/-1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of alpha-smooth muscle actin (97.1+/-1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. CONCLUSIONS: Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease

    Hepatitis B surface antigen expression impairs endoplasmic reticulum stress-related autophagic flux by decreasing LAMP2

    Full text link
    Background & Aims: Hepatitis B surface antigen (HBsAg) drives hepatocarcinogenesis. Factors and mechanisms involved in this progression remain poorly defined, hindering the development of effective therapeutic strategies. Therefore, the mechanisms involved in the HBsAg-induced transformation of normal liver into hepatocellular carcinoma (HCC) were investigated. Methods: Hemizygous Tg(Alb1HBV)44Bri/J mice were examined for HBsAg-induced carcinogenic events. Gene set-enrichment analysis identified significant signatures in HBsAg-transgenic mice that correlated with endoplasmic reticulum (ER) stress, unfolded protein response, autophagy and proliferation. These events were investigated by western blotting, immunohistochemical and immunocytochemical staining in 2-, 8- and 12-month-old HBsAg-transgenic mice. The results were verified in HBsAg-overexpressing Hepa1-6 cells and validated in human HBV-related HCC samples. Results: Increased BiP expression in HBsAg-transgenic mice indicated induction of the unfolded protein response. In addition, early-phase autophagy was enhanced (increased BECN1 and LC3B) and late-phase autophagy blocked (increased p62) in HBsAg-transgenic mice. Finally, HBsAg altered lysosomal acidification via ATF4- and ATF6-mediated downregulation of lysosome-associated membrane protein 2 (LAMP2) expression. In patients, HBV-related HCC and adjacent tissues showed increased BiP, p62 and downregulated LAMP2 compared to uninfected controls. In vitro, the use of ER stress inhibitors reversed the HBsAg-related suppression of LAMP2. Furthermore, HBsAg promoted hepatocellular proliferation as indicated by Ki67, cleaved caspase-3 and AFP staining in paraffin-embedded liver sections from HBsAg-transgenic mice. These results were further verified by colony formation assays in HBsAg-expressing Hepa1-6 cells. Interestingly, inhibition of ER stress in HBsAg-overexpressing Hepa1-6 cells suppressed HBsAg-mediated cell proliferation. Conclusions: These data showed that HBsAg directly induces ER stress, impairs autophagy and promotes proliferation, thereby driving hepatocarcinogenesis. In addition, this study expanded the understanding of HBsAg-mediated intracellular events in carcinogenesis. Impact and implications: Factors and mechanisms involved in hepatocarcinogenesis driven by hepatitis B surface antigen (HBsAg) are poorly defined, hindering the development of effective therapeutic strategies. This study showed that HBsAg-induced endoplasmic reticulum stress suppressed LAMP2, thereby mediating autophagic injury. The present data suggest that restoring LAMP2 function in chronic HBV infection may have both antiviral and anti-cancer effects. This study has provided insights into the role of HBsAg-mediated intracellular events in carcinogenesis and thereby has relevance for future drug development

    Tg1.4HBV-s-rec mice, a crossbred hepatitis B virus-transgenic model, develop mild hepatitis

    Full text link
    Abstract Hepatitis B virus (HBV)-transgenic mice exhibit competent innate immunity and are therefore an ideal model for considering intrinsic or cell-based mechanisms in HBV pathophysiology. A highly replicative model that has been little used, let alone characterized, is the Tg1.4HBV-s-rec strain derived from cross breeding of HBV-transgenic mouse models that either accumulate (Alb/HBs, Tg[Alb1-HBV]Bri44) or lack (Tg1.4HBV-s-mut) the hepatitis B surface antigen (HBsAg). Tg1.4HBV-s-rec hepatocytes secreted HBsAg, Hepatitis B extracellular antigen (HBeAg) and produced HBV virions. Transmission electron microscopy visualised viral particles (Tg1.4HBV-s-rec), nuclear capsid formations (Tg1.4HBV-s-mut and Tg1.4HBV-s-rec) and endoplasmic reticulum malformations (Alb/HBs). Viral replication in Tg1.4HBV-s-rec and Tg1.4HBV-s-mut differed in HBsAg expression and interestingly in the distribution of HBV core antigen (HBcAg) and HBV × protein. While in Tg1.4HBV-s-mut hepatocytes, the HBcAg was located in the cytoplasm, in Tg1.4HBV-s-rec hepatocytes, the HBcAg appeared in the nuclei, suggesting a more productive replication. Finally, Tg1.4HBV-s-rec mice showed symptoms of mild hepatitis, with reduced liver function and elevated serum transaminases, which appeared to be related to natural killer T cell activation. In conclusion, the study of Alb/HBs, Tg1.4HBV-s-mut and their F1 progeny provides a powerful tool to elucidate HBV pathophysiology, especially in the early HBeAg-positive phases of chronic infection and chronic hepatitis
    corecore