211 research outputs found

    Dynamical Scaling: the Two-Dimensional XY Model Following a Quench

    Full text link
    To sensitively test scaling in the 2D XY model quenched from high-temperatures into the ordered phase, we study the difference between measured correlations and the (scaling) results of a Gaussian-closure approximation. We also directly compare various length-scales. All of our results are consistent with dynamical scaling and an asymptotic growth law L(t/ln[t/t0])1/2L \sim (t/\ln[t/t_0])^{1/2}, though with a time-scale t0t_0 that depends on the length-scale in question. We then reconstruct correlations from the minimal-energy configuration consistent with the vortex positions, and find them significantly different from the ``natural'' correlations --- though both scale with LL. This indicates that both topological (vortex) and non-topological (``spin-wave'') contributions to correlations are relevant arbitrarily late after the quench. We also present a consistent definition of dynamical scaling applicable more generally, and emphasize how to generalize our approach to other quenched systems where dynamical scaling is in question. Our approach directly applies to planar liquid-crystal systems.Comment: 10 pages, 10 figure

    Breakdown of Scaling in the Nonequilibrium Critical Dynamics of the Two-Dimensional XY Model

    Full text link
    The approach to equilibrium, from a nonequilibrium initial state, in a system at its critical point is usually described by a scaling theory with a single growing length scale, ξ(t)t1/z\xi(t) \sim t^{1/z}, where z is the dynamic exponent that governs the equilibrium dynamics. We show that, for the 2D XY model, the rate of approach to equilibrium depends on the initial condition. In particular, ξ(t)t1/2\xi(t) \sim t^{1/2} if no free vortices are present in the initial state, while ξ(t)(t/lnt)1/2\xi(t) \sim (t/\ln t)^{1/2} if free vortices are present.Comment: 4 pages, 3 figure

    Stress-free Spatial Anisotropy in Phase-Ordering

    Full text link
    We find spatial anisotropy in the asymptotic correlations of two-dimensional Ising models under non-equilibrium phase-ordering. Anisotropy is seen for critical and off-critical quenches and both conserved and non-conserved dynamics. We argue that spatial anisotropy is generic for scalar systems (including Potts models) with an anisotropic surface tension. Correlation functions will not be universal in these systems since anisotropy will depend on, e.g., temperature, microscopic interactions and dynamics, disorder, and frustration.Comment: 4 pages, 4 figures include

    The Energy-Scaling Approach to Phase-Ordering Growth Laws

    Full text link
    We present a simple, unified approach to determining the growth law for the characteristic length scale, L(t)L(t), in the phase ordering kinetics of a system quenched from a disordered phase to within an ordered phase. This approach, based on a scaling assumption for pair correlations, determines L(t)L(t) self-consistently for purely dissipative dynamics by computing the time-dependence of the energy in two ways. We derive growth laws for conserved and non-conserved O(n)O(n) models, including two-dimensional XY models and systems with textures. We demonstrate that the growth laws for other systems, such as liquid-crystals and Potts models, are determined by the type of topological defect in the order parameter field that dominates the energy. We also obtain generalized Porod laws for systems with topological textures.Comment: LATeX 18 pages (REVTeX macros), one postscript figure appended, REVISED --- rearranged and clarified, new paragraph on naive dimensional analysis at end of section I

    Influence of extended dynamics on phase transitions in a driven lattice gas

    Full text link
    Monte Carlo simulations and dynamical mean-field approximations are performed to study the phase transition in a driven lattice gas with nearest-neighbor exclusion on a square lattice. A slight extension of the microscopic dynamics with allowing the next-nearest-neighbor hops results in dramatic changes. Instead of the phase separation into high- and low-density regions in the stationary state the system exhibits a continuous transition belonging to the Ising universality class for any driving. The relevant features of phase diagram are reproduced by an improved mean-field analysis.Comment: 3 pages, 3 figure

    Phase Ordering of 2D XY Systems Below T_{KT}

    Full text link
    We consider quenches in non-conserved two-dimensional XY systems between any two temperatures below the Kosterlitz-Thouless transition. The evolving systems are defect free at coarse-grained scales, and can be exactly treated. Correlations scale with a characteristic length L(t)t1/2L(t) \propto t^{1/2} at late times. The autocorrelation decay exponent, λˉ=(ηi+ηf)/2\bar{\lambda} = (\eta_i+\eta_f)/2, depends on both the initial and the final state of the quench through the respective decay exponents of equilibrium correlations, CEQ(r)rηC_{EQ}(r) \sim r^{-\eta}. We also discuss time-dependent quenches.Comment: LATeX 11 pages (REVTeX macros), no figure

    Anisotropic Coarsening: Grain Shapes and Nonuniversal Persistence

    Full text link
    We solve a coarsening system with small but arbitrary anisotropic surface tension and interface mobility. The resulting size-dependent growth shapes are significantly different from equilibrium microcrystallites, and have a distribution of grain sizes different from isotropic theories. As an application of our results, we show that the persistence decay exponent depends on anisotropy and hence is nonuniversal.Comment: 4 pages (revtex), 2 eps figure

    Driven diffusive system with non-local perturbations

    Full text link
    We investigate the impact of non-local perturbations on driven diffusive systems. Two different problems are considered here. In one case, we introduce a non-local particle conservation along the direction of the drive and in another case, we incorporate a long-range temporal correlation in the noise present in the equation of motion. The effect of these perturbations on the anisotropy exponent or on the scaling of the two-point correlation function is studied using renormalization group analysis.Comment: 11 pages, 2 figure

    Perturbative Corrections to the Ohta-Jasnow-Kawasaki Theory of Phase-Ordering Dynamics

    Full text link
    A perturbation expansion is considered about the Ohta-Jasnow-Kawasaki theory of phase-ordering dynamics; the non-linear terms neglected in the OJK calculation are reinstated and treated as a perturbation to the linearised equation. The first order correction term to the pair correlation function is calculated in the large-d limit and found to be of order 1/(d^2).Comment: Revtex, 27 pages including 2 figures, submitted to Phys. Rev. E, references adde

    Phase ordering in chaotic map lattices with conserved dynamics

    Full text link
    Dynamical scaling in a two-dimensional lattice model of chaotic maps, in contact with a thermal bath, is numerically studied. The model here proposed is equivalent to a conserved Ising model with coupligs which fluctuate over the same time scale as spin moves. When couplings fluctuations and thermal fluctuations are both important, this model does not belong to the class of universality of a Langevin equation known as model B; the scaling exponents are continuously varying with the temperature and depend on the map used. The universal behavior of model B is recovered when thermal fluctuations are dominant.Comment: 6 pages, 4 figures. Revised version accepted for publication on Physical Review E as a Rapid Communicatio
    corecore