1,633 research outputs found
The temporomandibular joint: pneumatic temporal cells open into the articular and extradural spaces
The pneumatisation of the articular tubercle (PAT) of the temporal squama is a rare condition that modifies the barrier between the temporomandibular joint (TMJ) space and the middle cranial fossa. During a routine examination of the cone-beam computed tomography (CBCT) files of patients who were scanned for dental medical purposes, we identified a case with multiple rare anatomic variations. First, the petrous apex was bilaterally pneumatised. Moreover, bilateral and multilocular PAT were observed, while on one side it was further found that the pneumatic cells were equally dehiscent towards the extradural space and the superior joint space. To the best of our knowledge, such dehiscence has not previously been reported. The two temporomastoid pneumatisations were extended with occipital pneumatisations of the lateral masses and occipital condyles, the latter being an extremely rare evidence. The internal dehiscence of the mandibular canal in the right ramus of the mandible was also noted. Additionally, double mental foramen and impacted third molars were found on the left side. Such multilocular PAT represents a low-resistance pathway for the bidirectional spread of fluids through the roof of the TMJ. Further, it could add to a morphological picture of hyperpneumatisation of the posterior cranial fossa floor, which could signify the involvement of the last four cranial nerves in the clinical picture of TMJ pain.
Low-Cost Assessment of User eXperience Through EEG Signals
EEG signals are an important tool for monitoring the brain activity of a person, but equipment, expertise and infrastructure are required. EEG technologies are generally expensive, thus few people are normally able to use them. However, some low-cost technologies are now available. One of these is OPENBCI, but it seems that it is yet to be widely employed in Human-Computer Interaction. In this study, we used OPENBCI technology to capture EEG signals linked to brain activity in ten subjects as they interacted with two video games: Candy Crush and Geometry Dash. The experiment aimed to capture the signals while the players interacted with the video games in several situations. The results show differences due to the absence/presence of sound; players appear to be more relaxed without sound. In addition, consistent analysis of the EEG data, meCue 2.0 and SAM data showed high consistency. The evidence demonstrates that interesting results are able to be gathered based on low-cost EEG (standard) signal-based technologies
Telocytes of the mammary gland stroma
Although confusions persist in what concerns the terminologies used for describing the fibroblastoid cells of the stromal compartments, the expression of antigens in such cells gradually directs their diagnosis towards a stem/progenitor phenotype. The stromal cells with long, slender and moniliform prolongations were named “telocytes” (TCs), their cell processes being termed “telopodes”. However, the mammary gland TCs were not evaluated for the CD34 expression. Thus an in vivo immunohistochemical study was designed; antibodies against CD10, CD34, CD117/c-kit and vimentin were applied on human mammary gland samples of 8 donor patients. Resident CD34-positive stromal cells positive for the TCs morphology were found building consistent stromal networks and ensheathing microvessels and excretory units. Such cells were CD10±/c-kit-/vimentin+. According to the current concepts regarding the in vivo stem/progenitor cells the CD34+ TCs of the mammary stroma could be actors in the mammary stem niche and their antigens expression could relate to different stages of differentiation
Bilateral giant and unilateral duplicated sphenoidal tubercle
The sphenoidal tubercle (SphT), also known as pyramidal tubercle or infratemporal spine projects from the anterior end of the infratemporal crest of the greater sphenoidal wing. As it masquerades the lateral entrance in the pterygopalatine fossa it could obstruct surgical corridors or the access for anaesthetic punctures. The SphT is, however, an overlooked structure in the anatomical literature. During a routine cone beam computed tomography study in an adult male patient we found bilateral giant SphTs transforming the infratemporal surfaces of the greater wing into veritable pterygoid foveae. Moreover, on one side the SphT appeared bifid, with a main giant partition, of 9.17 mm vertical length, and a secondary laminar one. The opposite SphT had 14.80 mm. In our knowledge, such giant and bifid SphTs were not reported previously and are major obstacles if surgical access towards the pterygopalatine fossa and the skull base is intended
Development of a stochastic computational fluid dynamics approach for offshore wind farms
In this paper, a method for stochastic analysis of an offshore wind farm using computational fluid dynamics (CFD) is proposed. An existing offshore wind farm is modelled using a steady-state CFD solver at several deterministic input ranges and an approximation model is trained on the CFD results. The approximation model is then used in a Monte-Carlo analysis to build joint probability distributions for values of interest within the wind farm. The results are compared with real measurements obtained from the existing wind farm to quantify the accuracy of the predictions. It is shown that this method works well for the relatively simple problem considered in this study and has potential to be used in more complex situations where an existing analytical method is either insufficient or unable to make a good prediction
DC conduction mechanism of some new lower rim substituted calixarenes derivatives in thin films
Date du colloque : 09/2014International audienc
Database Learning: Toward a Database that Becomes Smarter Every Time
In today's databases, previous query answers rarely benefit answering future
queries. For the first time, to the best of our knowledge, we change this
paradigm in an approximate query processing (AQP) context. We make the
following observation: the answer to each query reveals some degree of
knowledge about the answer to another query because their answers stem from the
same underlying distribution that has produced the entire dataset. Exploiting
and refining this knowledge should allow us to answer queries more
analytically, rather than by reading enormous amounts of raw data. Also,
processing more queries should continuously enhance our knowledge of the
underlying distribution, and hence lead to increasingly faster response times
for future queries.
We call this novel idea---learning from past query answers---Database
Learning. We exploit the principle of maximum entropy to produce answers, which
are in expectation guaranteed to be more accurate than existing sample-based
approximations. Empowered by this idea, we build a query engine on top of Spark
SQL, called Verdict. We conduct extensive experiments on real-world query
traces from a large customer of a major database vendor. Our results
demonstrate that Verdict supports 73.7% of these queries, speeding them up by
up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM
SIGMOD conference 201
Toll-like receptor 4 expression in the epithelium of inflammatory periapical lesions. An immunohistochemical study
Toll-like receptors (TLR) are essential for the innate immune response against invading pathogens and have been described in immunocompetent cells of areas affected by periapical disease. Besides initiating the inflammatory response, they also directly regulate epithelial cell proliferation and survival in a variety of settings. This study evaluates the in situ expression of TLR4 in periapical granulomas (PG) and radicular cysts, focusing on the epithelial compartment. Twenty-one periapical cysts (PC) and 10 PG were analyzed; 7 dentigerous non-inflamed follicular cyst (DC) served as control. TLR4 expression was assessed by immunohistochemistry. TLR4 immunoreaction products were detected in the epithelium of all specimens, with a higher percentage of immunostained cells in PG. Although TLR4 overexpression was detected in both PG and PC, there were differences that seemed to be related to the nature of the lesion, since in PG all epithelial cells of strands, islands and trabeculae were strongly immunoreactive for TLR4, whereas in PC only some areas of the basal and suprabasal epithelial layers were immunostained. This staining pattern is consistent with the action of TLR4: in PG it could promote formation of epithelial cell rests of Malassez and in epithelial strands and islands the enhancement of cell survival, proliferation and migration, whereas in PC TLR4 could protect the lining epithelium from extensive apoptosis. These findings go some way towards answering the intriguing question of why many epithelial strands or islands in PG and the lining epithelium of apical cysts regress after non-surgical endodontic therapy, and suggest that TLR4 plays a key role in the pathobiology of the inflammatory process related to periapical disease
Independent and complementary bio-functional effects of CuO and Ga2O3 incorporated as therapeutic agents in silica- and phosphate-based bioactive glasses
The incorporation of therapeutic-capable ions into bioactive glasses (BGs), either based on silica (SBGs) or phosphate (PBGs), is currently envisaged as a proficient path for facilitating bone regeneration. In conjunction with this view, the single and complementary structural and bio-functional roles of CuO and Ga2O3 (in the 2–5 mol% range) were assessed, by deriving a series of SBG and PBG formulations starting from the parent glass systems, FastOs®BG – 38.5SiO2—36.1CaO—5.6P2O5—19.2MgO—0.6CaF2, and 50.0P2O5—35.0CaO—10.0Na2O—5.0 Fe2O3 (mol%), respectively, using the process of melt-quenching. The inter-linked physico-chemistry – biological response of BGs was assessed in search of bio-functional triggers. Further light was shed on the structural role – as network former or modifier – of Cu and Ga, immersed in SBG and PBG matrices. The preliminary biological performance was surveyed in vitro by quantification of Cu and Ga ion release under homeostatic conditions, cytocompatibility assays (in fibroblast cell cultures) and antibacterial tests (against Staphylococcus aureus). The similar (Cu) and dissimilar (Ga) structural roles in the SBG and PBG vitreous networks governed their release. Namely, Cu ions were leached in similar concentrations (ranging from 10–35 ppm and 50–110 ppm at BG doses of 5 and 50 mg/mL, respectively) for both type of BGs, while the release of Ga ions was 1–2 orders of magnitude lower in the case of SBGs (i.e., 0.2–6 ppm) compared to PBGs (i.e., 9–135 ppm). This was attributed to the network modifier role of Cu in both types of BGs, and conversely, to the network former (SBGs) and network modifier (PBGs) roles of Ga. All glasses were cytocompatible at a dose of 5 mg/mL, while at the same concentration the antimicrobial efficiency was found to be accentuated by the coupled release of Cu and Ga ions from SBG. By collective assessment, the most prominent candidate material for the further development of implant coatings and bone graft substitutes was delineated as the 38.5SiO2—34.1CaO—5.6P2O5—16.2MgO—0.6CaF2—2.0CuO—3.0Ga2O3 (mol%) SBG system, which yielded moderate Cu and Ga ion release, excellent cytocompatibility and marked antibacterial efficacy.publishe
- …