95 research outputs found
A novel method for the remote condition assessment of buried pipelines using low-frequency axisymmetric waves
“Mapping the Underworld” is a large multi-disciplinary, multi-university research programme taking place in the UK, which aims to revolutionize the way we undertake streetworks. Within this programme, a number of vibration-based techniques for remotely detecting and locating buried pipes have been developed. Relying either on the direct excitation of a pipe as it comes up to the surface or excitation of the ground in the vicinity of a buried pipe, mapping the ground surface vibration response allows information to be gathered concerning the pipe’s exact position. However, contained within this surface response is often information which could, if utilized appropriately, provide insights into the condition of the pipe as well as its location. Furthermore, critical information regarding the condition of the ground in which a pipe is buried could, in some circumstances, be gleaned. In this paper, how this additional information might be extracted, used and eventually exploited is explored. Providing the basis for work currently being undertaken in a new programme, “Assessing the Underworld”, example results are presented which demonstrate the immense potential of the proposed methods
Dinamica degli organi rotanti: analisi, identificazione e controllo
Gli organi rotanti di macchinari moderni sono soggetti a velocità sempre più elevate e limiti vibratori sempre più ristretti. Gli strumenti per ridurre tali vibrazioni sono l’analisi e l’identificazione dei sistemi per un opportuno dimensionamento delle parti rotanti, e l’utilizzo di appropriati smorzatori.
Elementi importanti nella dinamica dei rotori ma di difficile caratterizzazione sono i supporti. Il metodo identificativo delle funzioni modulanti è stato applicato all’identificazione dei coefficienti dinamici di cuscinetti idrodinamici. Sono stati ottenuti risultati incoraggianti sia dalle analisi numeriche che sperimentali.
Inoltre è presentato il progetto di uno smorzatore magnetoreologico a “squeeze-film”. Sono stati condotti sia una analisi numerica che una campagna sperimentale. Poichè il coefficiente smorzante del cuscinetto può essere variato con continuità è stato possibile impostare le condizioni di funzionamento ottimo per ogni condizione operativa. Un controllore automatico è stato progettato con l’uso di logica Fuzzy e algoritmi genetici.
Infine sono state studiate le vibrazioni di dischi sottili rotanti in presenza di attrito secco, problema molto complesso e molto sentito in vari ambiti industriali. Sono quindi presentati e discussi i risultati di un’indagine sperimentale condotta sia su un macchinario commerciale di una cartiera che su una attrezzatura sperimentale. È stata mostrata l’influeza di alcuni parametri sull’insorgere delle vibrazioni
Remote pipeline assessment and condition monitoring using low-frequency axisymmetric waves: a theoretical study of torsional wave motion
Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n=0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s=1, fluid-dominated wave; and the s=2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s=0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low-frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed
Removing surface accretions with piezo-excited high-frequency structural waves
Unwanted accretions on structures are a common machinery maintenance problem, which can pose a serious safety threat if not treated effectively and punctually. In this paper we investigate the capability of piezo-excited structural waves for invoking delamination of accreted material from waveguides. We apply a wave-based technique for modelling piezoelectric excitation based on semi-analytical finite elements to model the interface shear stress associated with piezo-actuated structural waves. As a proof of concept, we present a demonstration experiment in which patches of material are removed from a beam-like waveguide with emulated anechoic terminations using ultrasonic excitation.<br/
The development of an intelligent hybrid active-passive vibration isolator
A hybrid active-passive vibration isolator made up of electromagnetic actuator and air spring in parallel can be used to effectively isolate the broadband and line spectrum vibration of mechanical equipment simultaneously. However, due to its reliability and safety problems caused by the impact, its application in ships is limited. In this paper, an impactresistant structure and an air gap self-sensing method of the passive-active hybrid vibration isolator are proposed and developed on the base of modelling, simulation and analysis. A thin magnetic rubber is filled into the air gap of electromagnetic actuator, which can avoid rigid collision between the armature and the permanent magnet under the action of impact. A suspension armature structure including pre-compression spring is suggested, which can automatically compensate the deformation caused by impact and protect the coil and permanent magnet from impact damage. An air gap self-sensing method is developed through detecting the voltage between the input and output terminals of actuator, which is verified by experiments
Wave propagation in rods with an exponentially varying cross-section - modelling and experiments
In this paper we analyse longitudinal wave propagation in exponentially tapered rods from both a theoretical and an experimental perspective. The tapering introduces significant changes to the behaviour of the rod. The longitudinal wave does not propagate from zero frequency, its cut-off frequency depending on the coefficient in the exponent. The analytical description of this phenomenon is well established, however little experimental workhas been published to date. After a brief review of the classical solution of the exponential rod equation, we derive a methodology allowing the wavenumbers to be estimated from a set of equally spaced dynamic responses. Our approach is verified numerically against a finite element simulation and validated experimentally, both showing very good agreement. To further explain the results and provide an outlook for future work, we present a finite element model of the tapered rod embedded in an infinite solid medium. We conclude with a discussion on the effects of the surrounding medium on the behaviour of the structure and resulting characteristicfeatures of the wavenumber
The detection of vertical cracks in asphalt using seismic surface wave methods
Assessment of the location and of the extension of cracking in road surfaces is important for determining the potential level of deterioration in the road overall and the infrastructure buried beneath it. Damage in a pavement structure is usually initiated in the tarmac layers, making the Rayleigh wave ideally suited for the detection of shallow surface defects. This paper presents an investigation of two surface wave methods to detect and locate top-down cracks in asphalt layers. The aim of the study is to compare the results from the wellestablished Multichannel Analysis of Surface Waves (MASW) and the more recent Multiple Impact of Surface Waves (MISW) in the presence of a discontinuity and to suggest the best surface wave technique for evaluating the presence and the extension of vertical cracks in roads. The study is conducted through numerical simulations alongside experimental investigations and it considers the cases for which the cracking is internal and external to the deployment of sensors. MISW is found to enhance the visibility of the reflected waves in the frequency wavenumber (f-k) spectrum, helping with the detection of the discontinuity. In some cases, by looking at the f-k spectrum obtained with MISW it is possible to extract information regarding the location and the depth of the cracking
A study on calculation method for mechanical impedance of air spring
This paper proposes an approximate analytic method of obtaining the mechanical impedance of air spring. The sound pressure distribution in cylindrical air spring is calculated based on the linear air wave theory. The influences of different boundary conditions on the acoustic pressure field distribution in cylindrical air spring are analysed. A 1-order ordinary differential matrix equation for the state vector of revolutionary shells under internal pressure is derived based on the non-moment theory of elastic thin shell. Referring to the transfer matrix method, a kind of expanded homogeneous capacity high precision integration method is introduced to solve the non-homogeneous matrix differential equation. Combined the solved stress field of shell with the calculated sound pressure field in air spring under the displacement harmonic excitation, the approximate analytical expression of the input and transfer mechanical impedance for the air spring can be achieved. The numerical simulation with the Comsol Multiphysics software verifies the correctness of theoretical analysis result
- …