1,875 research outputs found

    Global entrainment of transcriptional systems to periodic inputs

    Get PDF
    This paper addresses the problem of giving conditions for transcriptional systems to be globally entrained to external periodic inputs. By using contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all solutions converge to a fixed limit cycle. General results are proved, and the properties are verified in the specific case of some models of transcriptional systems. The basic mathematical results needed from contraction theory are proved in the paper, making it self-contained

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Low Operating Voltage Carbon-Graphene Hybrid E-textile for Temperature Sensing

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordGraphene-coated polypropylene (PP) textile fibers are presented for their use as temperature sensors. These temperature sensors show a negative thermal coefficient of resistance (TCR) in a range between 30 and 45 Β°C with good sensitivity and reliability and can operate at voltages as low as 1 V. The analysis of the transient response of the temperature on resistance of different types of graphene produced by chemical vapor deposition (CVD) and shear exfoliation of graphite (SEG) shows that trilayer graphene (TLG) grown on copper by CVD displays better sensitivity due to the better thickness uniformity of the film and that carbon paste provides good contact for the measurements. Along with high sensitivity, TLG on PP shows not only the best response but also better transparency, mechanical stability, and washability compared to SEG. Temperature-dependent Raman analysis reveals that the temperature has no significant effect on the peak frequency of PP and expected effect on graphene in the demonstrated temperature range. The presented results demonstrate that these flexible, lightweight temperature sensors based on TLG with a negative TCR can be easily integrated in fabrics.European CommissionEngineering and Physical Sciences Research Council (EPSRC)University of ExeterPortuguese Foundation for Science and Technolog

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    Get PDF
    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR)
    • …
    corecore