6 research outputs found

    Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    Get PDF
    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes’ inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(IV) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(IV)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(IV)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(IV)@CNT exposure demonstrate that they can promote drug accumulation inside cells in comparison with treatment with the free complex. To conclude, our study shows that CNTs are promising nanocarriers to improve the accumulation of a chemotherapeutic drug and its slow release inside tumor cells, by tuning the CNT diameter, without inducing a high inflammatory response

    Polycationic adamantane-based dendrons of different generations display high cellular uptake without triggering cytotoxicity.

    No full text
    Dendrons used as synthetic carriers are promising nanostructures for biomedical applications. Some polycationic dendritic systems, such as the commercially available polyethylenimine (PEI), have the ability to deliver genetic material into cells. Nevertheless, polycationic vectors are often associated with potential cellular toxicity, which prevents their use in clinical development. In this context, our research focused on the design and synthesis of a novel type of polycationic dendrons that are able to penetrate into cells without triggering cytotoxic effects. We synthesized first- and second-generation polycationic adamantane-based dendrons via a combined protection/deprotection strategy starting from different adamantane scaffolds. The linker between the adamantane cores is constituted of short ethylene glycol chains, and the periphery consists of ammonium and guanidinium groups. None of these dendritic structures, which we previously called HYDRAmers, displayed significant cytotoxicity effects on two different cell lines (RAW 264.7 and HeLa). Conjugation of the fluorescent probe cyanine 5 at their focal point via click chemistry permitted the evaluation of their cellular internalization. All of the dendrons penetrated through the membrane with efficient cellular uptake depending of the dendron generation and the nature of the peripheral groups. These results suggest that the polycationic HYDRAmers are potentially interesting as new vectors in biomedical applications, including gene and drug delivery.journal articleresearch support, non-u.s. gov't2014 Jan 152014 01 03importe

    Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells.

    No full text
    Graphene oxide (GO) is attracting an ever-growing interest in different fields and applications. Not much is known about the possible impact of GO sheet lateral dimensions on their effects in vitro, especially on human primary cells. In an attempt to address this issue, we present a study to evaluate, how highly soluble 2-dimensional GO constituted of large or small flakes affects human monocyte derived macrophages (hMDM). For this purpose, the lateral size of GO was tuned using sonication and three samples were obtained. The non sonicated one presented large flakes (~1.32 ÎĽm) while sonication for 2 and 26 hours generated small (~0.27 ÎĽm) and very small (~0.13 ÎĽm) sheets of GO, respectively. Cell studies were then conducted to evaluate the cytotoxicity, the oxidative stress induction, the activation potential and the pro-inflammatory effects of these different types of GO at increasing concentrations. In comparison, the same experiments were run on murine intraperitoneal macrophages (mIPM). The interaction between GO and cells was further examined by TEM and Raman spectroscopy. Our data revealed that the GO sheet size had a significant impact on different cellular parameters (i.e. cellular viability, ROS generation, and cellular activation). Indeed, the more the lateral dimensions of GO were reduced, the higher were the cellular internalization and the effects on cellular functionality. Our data also revealed a particular interaction of GO flakes with the cellular membrane. In fact, a GO mask due to the parallel arrangement of the graphene sheets on the cellular surface was observed. Considering the mask effect, we have hypothesized that this particular contact between GO sheets and the cell membrane could either promote their internalization or isolate cells from their environment, thus possibly accounting for the following impact on cellular parameters.comparative studyjournal articleresearch support, non-u.s. gov't2013 Nov 212013 10 01importe

    Dispersibility-Dependent Biodegradation of Graphene Oxide by Myeloperoxidase.

    No full text
    Understanding human health risk associated with the rapidly emerging graphene-based nanomaterials represents a great challenge because of the diversity of applications and the wide range of possible ways of exposure to this type of materials. Herein, the biodegradation of graphene oxide (GO) sheets is reported by using myeloperoxidase (hMPO) derived from human neutrophils in the presence of a low concentration of hydrogen peroxide. The degradation capability of the enzyme on three different GO samples containing different degree of oxidation on their graphenic lattice, leading to a variable dispersibility in aqueous media is compared. hMPO fails in degrading the most aggregated GO, but succeeds to completely metabolize highly dispersed GO samples. The spectroscopy and microscopy analyses provide unambiguous evidence for the key roles played by hydrophilicity, negative surface charge, and colloidal stability of the aqueous GO in their biodegradation by hMPO catalysis.journal articleresearch support, non-u.s. gov't2015 Aug 262015 05 08importe
    corecore