24,443 research outputs found
Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes
Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of
fused silica while being free of Raman scattering. It also has a much higher
optical damage threshold and a transparency window that extends from the UV to
the infrared. We report the observation of nonlinear phenomena, such as
self-phase modulation, in hollow-core photonic crystal fiber filled with
supercritical Xe. In the subcritical regime, intermodal four-wave-mixing
resulted in the generation of UV light in the HE12 mode. The normal dispersion
of the fiber at high pressures means that spectral broadening can clearly
obtained without influence from soliton effects or material damage
High-precision radiocarbon dating of the construction phase of Oakbank Crannog, Loch Tay, Perthshire
Many of the Loch Tay crannogs were built in the Early Iron Age and so calibration of the radiocarbon ages produces
very broad calendar age ranges due to the well-documented Hallstatt plateau in the calibration curve. However, the
large oak timbers that were used in the construction of some of the crannogs potentially provide a means of improving the precision of the dating through subdividing them into decadal or subdecadal increments, dating them to high precision and wiggle-matching the resulting data to the master <sup>14</sup>C calibration curve. We obtained a sample from 1 oak timber from Oakbank Crannog comprising 70 rings (Sample OB06 WMS 1, T103) including sapwood that was complete to the bark edge. The timber is situated on the northeast edge of the main living area of the crannog and as a large and strong oak pile would have been a useful support in more than 1 phase of occupation and may be related to the earliest construction phase of the site. This was sectioned into 5-yr increments and dated to a precision of approximately ±8–16 <sup>14</sup>C yr (1 σ). The wiggle-match predicts that the last ring dated was formed around 500 BC (maximum range of 520–465 BC) and should be taken as indicative of the likely time of construction of Oakbank Crannog. This is a considerable improvement on the estimates based on single <sup>14</sup>C ages made on oak samples, which typically encompassed the period from around 800–400 BC
Modified protein expression in the tectorial membrane of the cochlea reveals roles for the striated sheet matrix
The tectorial membrane (TM) of the mammalian cochlea is a complex extracellular matrix which, in response to acoustic stimulation, displaces the hair bundles of outer hair cells (OHCs), thereby initiating sensory transduction and amplification. Here, using TM segments from the basal, high-frequency region of the cochleae of genetically modified mice (including models of human hereditary deafness) with missing or modified TM proteins, we demonstrate that frequency-dependent stiffening is associated with the striated sheet matrix (SSM). Frequency-dependent stiffening largely disappeared in all three TM mutations studied where the SSM was absent either entirely or at least from the stiffest part of the TM overlying the OHCs. In all three TM mutations, dissipation of energy is decreased at low (<8 kHz) and increased at high (>8 kHz) stimulus frequencies. The SSM is composed of polypeptides carrying fixed charges, and electrostatic interaction between them may account for frequency-dependent stiffness changes in the material properties of the TM. Through comparison with previous in vivo measurements, it is proposed that implementation of frequency-dependent stiffening of the TM in the OHC attachment region facilitates interaction among tones, backward transmission of energy, and amplification in the cochlea
Reification and Truthmaking Patterns
Reification is a standard technique in conceptual modeling, which consists of including in the domain of discourse entities that may otherwise be hidden or implicit. However, deciding what should be rei- fied is not always easy. Recent work on formal ontology offers us a simple answer: put in the domain of discourse those entities that are responsible for the (alleged) truth of our propositions. These are called truthmakers. Re-visiting previous work, we propose in this paper a systematic analysis of truthmaking patterns for properties and relations based on the ontolog- ical nature of their truthmakers. Truthmaking patterns will be presented as generalization of reification patterns, accounting for the fact that, in some cases, we do not reify a property or a relationship directly, but we rather reify its truthmakers
- …