43 research outputs found
Whole exome sequencing in patients with Williams-Beuren syndrome followed by disease modeling in mice points to four novel pathways that may modify stenosis risk
Supravalvular aortic stenosis (SVAS) is a narrowing of the aorta caused by elastin (ELN) haploinsufficiency. SVAS severity varies among patients with Williams-Beuren syndrome (WBS), a rare disorder that removes one copy of ELN and 25-27 other genes. Twenty percent of children with WBS require one or more invasive and often risky procedures to correct the defect while 30% have no appreciable stenosis, despite sharing the same basic genetic lesion. There is no known medical therapy. Consequently, identifying genes that modify SVAS offers the potential for novel modifier-based therapeutics. To improve statistical power in our rare-disease cohort (Nâ=â104 exomes), we utilized extreme-phenotype cohorting, functional variant filtration and pathway-based analysis. Gene set enrichment analysis of exome-wide association data identified increased adaptive immune system variant burden among genes associated with SVAS severity. Additional enrichment, using only potentially pathogenic variants known to differ in frequency between the extreme phenotype subsets, identified significant association of SVAS severity with not only immune pathway genes, but also genes involved with the extracellular matrix, G protein-coupled receptor signaling and lipid metabolism using both SKAT-O and RQTest. Complementary studies in Eln+/-; Rag1-/- mice, which lack a functional adaptive immune system, showed improvement in cardiovascular features of ELN insufficiency. Similarly, studies in mixed background Eln+/- mice confirmed that variations in genes that increase elastic fiber deposition also had positive impact on aortic caliber. By using tools to improve statistical power in combination with orthogonal analyses in mice, we detected four main pathways that contribute to SVAS risk
An Afferent Vagal Nerve Pathway Links Hepatic PPARα Activation to Glucocorticoid-Induced Insulin Resistance and Hypertension
SummaryGlucocorticoid excess causes insulin resistance and hypertension. Hepatic expression of PPARα (Ppara) is required for glucocorticoid-induced insulin resistance. Here we demonstrate that afferent fibers of the vagus nerve interface with hepatic Ppara expression to disrupt blood pressure and glucose homeostasis in response to glucocorticoids. Selective hepatic vagotomy decreased hyperglycemia, hyperinsulinemia, hepatic insulin resistance, Ppara expression, and phosphoenolpyruvate carboxykinase (PEPCK) enzyme activity in dexamethasone-treated Ppara+/+ mice. Selective vagotomy also decreased blood pressure, adrenergic tone, renin activity, and urinary sodium retention in these mice. Hepatic reconstitution of Ppara in nondiabetic, normotensive dexamethasone-treated PPARα null mice increased glucose, insulin, hepatic PEPCK enzyme activity, blood pressure, and renin activity in sham-operated animals but not hepatic-vagotomized animals. Disruption of vagal afferent fibers by chemical or surgical means prevented glucocorticoid-induced metabolic derangements. We conclude that a dynamic interaction between hepatic Ppara expression and a vagal afferent pathway is essential for glucocorticoid induction of diabetes and hypertension
Inhibition of NOX1 mitigates blood pressure increases in elastin insufficiency
Elastin (ELN) insufficiency leads to the cardiovascular hallmarks of the contiguous gene deletion disorder, Williams-Beuren syndrome, including hypertension and vascular stiffness. Previous studies showed that Williams-Beuren syndrome deletions, which extended to include th
Hypotension due to Kir6.1 gainâofâfunction in vascular smooth muscle
BACKGROUND: K(ATP) channels, assembled from poreâforming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal anginaâlike symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. METHODS AND RESULTS: We generated transgenic mice expressing wildâtype (WT), ATPâinsensitive Kir6.1 [Gly343Asp] (GD), and ATPâinsensitive Kir6.1 [Gly343Asp,Gln53Arg] (GDâQR) subunits, under Creârecombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoterâdriven tamoxifenâinducible Creârecombinase (SMMHCâCreâER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and K(ATP) currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GDâQR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominantânegative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GDâQR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal K(ATP) conductance and pinacidilâactivated conductance were elevated in GD but not in WT myocytes. CONCLUSIONS: K(ATP) overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular K(ATP) function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure
Elastin is a major structural component of large elastic arteries and a principal determinant of arterial biomechanical properties. Elastin loss-of-function mutations in humans have been linked to the autosomal-dominant disease supravalvular aortic stenosis, which is characterized by stenotic lesions in both the systemic and pulmonary circulations. To better understand how elastin insufficiency influences the pulmonary circulation, we evaluated pulmonary cardiovascular physiology in a unique set of transgenic and knockout mice with graded vascular elastin dosage (range 45â120% of wild type). The central pulmonary arteries of elastin-insufficient mice had smaller internal diameters (P < 0.0001), thinner walls (P = 0.002), and increased opening angles (P = 0.002) compared with wild-type controls. Pulmonary circulatory pressures, measured by right ventricular catheterization, were significantly elevated in elastin-insufficient mice (P < 0.0001) and showed an inverse correlation with elastin level. Although elastin-insufficient animals exhibited mild to moderate right ventricular hypertrophy (P = 0.0001) and intrapulmonary vascular remodeling, the changes were less than expected, given the high right ventricular pressures, and were attenuated compared with those seen in hypoxia-induced models of pulmonary arterial hypertension. The absence of extensive pathological cardiac remodeling at the high pressures in these animals suggests a developmental adaptation designed to maintain right-sided cardiac output in a vascular system with altered elastin content