6 research outputs found
Additional file 1: of Risk factors for COPD exacerbations in inhaled medication users: the COPDGene study biannual longitudinal follow-up prospective cohort
Supplementary Data and Methods. (DOCX 38 kb
Additional file 3: of Multiple biomarkers predict disease severity, progression and mortality in COPD
Supplemental Methods. (DOCX 76 kb
Additional file 1: Table S1. of Multiple biomarkers predict disease severity, progression and mortality in COPD
Association Between Biomarkers and COPD Outcomes. Table S2. Statistical Models. Table S3. Demographics of Subjects at Baseline: COPDGene Cohort*. Table S4. Demographics of Subjects at Baseline: ECLIPSE Cohort*. Table S5. Analysis of COPDGene cohort. Grey shading indicates each model with lines for each biomarker in that model. Columns are beta coefficient in model (B), odds ratio, standard error (SE), correlation coefficient (R2) or pseudo R2 Cragg and Uhler’s (CU) or R2m (the marginal portion of the R2), Akaike Information Criteria (AIC), and number of subjects analyzed (N). The type of model is listed on top right of table. The best model highlighted in yellow. Table S6. Analysis of ECLIPSE cohort. Best model in ECLIPSE cohort highlighted in yellow. Grey shading indicates each model with lines for each biomarker in that model. Columns are beta coefficient in model (B), odds ratio, standard error (SE), correlation coefficient (R2) or pseudo R2 Cragg and Uhler’s (CU) or R2m (the marginal portion of the R2), Akaike Information Criteria (AIC), and number of subjects analyzed (N). The type of model is listed on top right of table. Best model in COPDGene cohort in red font. Table S7. Biomarkers Associated with FEV1/FVC. Table S8. Biomarkers Associated with (A) Total (Moderate and Severe) Exacerbations and (B) Severe Exacerbations in the Previous 12 Months. Table S9. Biomarkers Associated with (A) Prospective Total (Moderate and Severe) Exacerbations or (B) Prospective Severe Exacerbations. Table S10. Enrollment Centers. Table S11. Baseline Characteristics of Subjects with Biomarker Data Compared with Entire COPDGene Cohort. Table S12. Correlation Between Biomarkers. Table S13. Biomarkers Associated with Mortality. Analysis of COPDGene and ECLIPSE cohorts by C-statistic. Covariates were BODE, age, age2, gender, and severe exacerbations. (ZIP 485 kb
Additional file 2: Figure S1. of Multiple biomarkers predict disease severity, progression and mortality in COPD
Distribution of Biomarkers. Biomarker levels were log transformed. Figure S2. Relationship Between Individual Biomarkers and FEV1. Beeswarm/box plot of biomarker levels in never smokers, smokers with normal lung function PRISm, and Gold Stage 1–4 COPD patients. Central box bars represent the median and end box bars represent the first and third quartiles. Analysis by linear regression. *p < 10−5. Figure S3. Relationship Between Individual Biomarkers and Emphysema. Analysis performed by ordinal logistic regression. Covariates were FEV1, age, smoking status, gender, race, and BMI. % Emphysema defined as % of voxels with HU < −950. *p < 0.01. (PDF 312 kb
Additional file 2: of The value of blood cytokines and chemokines in assessing COPD
Cross Sectional Associations by Subgroup Heat Map. (PDF 156 kb
Additional file 1 of Pectoralis muscle area and mortality in smokers without airflow obstruction
Figure S1. Plot of the pectoralis muscle area (PMA) to paravertebral muscle area (PVMA). The relationship between the muscle groups was significant (R2 = 0.44, P < 0.0001). Table S1 Baseline characteristics of at-risk smokers by quartile of PVMA (N = 3705). (DOCX 207 kb