34 research outputs found

    The Structure of High Strehl Ratio Point-Spread Functions

    Full text link
    We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive o to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error, over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are two symmetric second degree terms. One is negative at the center, and, like the first order term, is modulated by the perfect image's field strength -- it reduces to the Marechal approximation at the center of the PSF. The other is non-negative everywhere, zero at the image center, and can be responsible for an extended halo -- which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demonstrate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles, and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure

    Ground-based coronagraphy with high-order adaptive optics

    Get PDF
    We simulate the actions of a coronagraph matched to diffraction-limited adaptive optics (AO) systems on the Calypso 1.2 m, Palomar Hale 5 m and Gemini 8.1 m telescopes, and identify useful parameter ranges for AO coronagraphy on these systems. We model the action of adaptive wavefront correction with a tapered, high-pass filter in spatial frequency rather than a hard low frequency cutoff, and estimate the minimum number of AO channels required to produce sufficient image quality for coronagraphic suppression within a few diffraction widths of a central bright object (as is relevant to e.g., brown dwarf searches near late-type dwarf stars). We explore the effect of varying the occulting image- plane stop size and shape, and examine the trade-off between throughput and suppression of the image halo and Airy rings. We discuss our simulations in the context of results from the 241-channel Palomar Hale AO coronagraph system, and suggest approaches for future AO coronagraphic instruments on large telescopes

    Ground-Based Coronagraphy with High Order Adaptive Optics

    Get PDF
    We summarize the theory of coronagraphic optics, and identify a dimensionless fine-tuning parameter, F, which we use to describe the Lyot stop size in the natural units of the coronagraphic optical train and the observing wavelength. We then present simulations of coronagraphs matched to adaptive optics (AO) systems on the Calypso 1.2m, Palomar Hale 5m and Gemini 8m telescopes under various atmospheric conditions, and identify useful parameter ranges for AO coronagraphy on these telescopes. Our simulations employ a tapered, high-pass filter in spatial frequency space to mimic the action of adaptive wavefront correction. We test the validity of this representation of AO correction by comparing our simulations with recent K-band data from the 241-channel Palomar Hale AO system and its dedicated PHARO science camera in coronagraphic mode.Comment: To appear in ApJ, May 2001 (28 pages, 10 figs

    Circumstellar Disks in the Orion Nebula Cluster

    Get PDF
    We combine our previous optical spectroscopic and photometric analysis of ~1600 stars located in the Orion Nebula Cluster (ONC) with our own and published near-infrared photometric surveys of the region in order to investigate the evidence for and properties of circumstellar disks. We use the near-infrared continuum excess as our primary disk diagnostic, although we also study sources with Ca II triplet emission and those designated as "proplyds." The measured near-infrared excess is influenced by (1) the presence or absence of a circumstellar disk, (2) the relative importance of disk accretion and inner disk holes, (3) the relative contrast between photospheric and disk emission, and (4) system inclination. After attempting to understand the effects of these influences, we estimate the frequency of circumstellar disks and discuss the evidence for trends in the disk frequency with stellar mass (over the mass range <0.1–50 M_⊙), stellar age (over the age range <0.1–2 Myr), and projected cluster radius (over the radial range 0–3 pc). We find that the fraction of stars retaining their inner (<0.1 AU) circumstellar disks to the present time is at least 55% and probably no more than 90%, averaged over the entire range in stellar mass and stellar age represented in the ONC and over the entire area of our survey. We find no trend in the disk fraction with stellar age, at least not over the limited age range of the cluster. We find that more massive stars are less likely to have disks, consistent with a scenario in which the evolutionary timescales are more rapid for disks surrounding more massive stars than for disks surrounding less massive stars. We also find that the disk frequency begins to decrease toward the lowest masses, although objects of all masses (including those that appear to be substellar) can have disks. We find that the disk frequency increases toward the cluster center. We then argue, using several lines of evidence, that a large fraction of the disks associated with stars in the ONC are accretion disks. The observed trends with stellar age, stellar mass, and projected cluster radius in the disk frequency may, in fact, be driven primarily by trends in the disk accretion properties. From the magnitude of the near-infrared excess above that expected from pure irradiation disks, we find an accretion disk fraction among the stars identified as having disks of 61%–88%. In addition, approximately 20% of the stars in our optical spectroscopic sample show broad (several hundred km s^(-1) FWHM) Ca II emission lines, which are features often associated with accretion disk/wind phenomena; another 50% of the sample have Ca II lines that (at our spectral resolution) are "filled in," indicating an independently derived accretion disk frequency of ~70%. Finally, we discuss the near-infrared and optical emission-line properties of that portion of our sample identified from Hubble Space Telescope imaging as having a dark silhouette or an externally ionized structure. This sample, proposed in the literature to have accretion disks, appears to be no different in terms of its stellar or circumstellar properties from the rest of the ONC population. The only feature distinguishing these objects from their ONC siblings thus may be their current (but short-lived) proximity to the massive stars near the cluster center

    Ground-based coronagraphy with high-order adaptive optics

    Get PDF
    We simulate the actions of a coronagraph matched to diffraction-limited adaptive optics (AO) systems on the Calypso 1.2 m, Palomar Hale 5 m and Gemini 8.1 m telescopes, and identify useful parameter ranges for AO coronagraphy on these systems. We model the action of adaptive wavefront correction with a tapered, high-pass filter in spatial frequency rather than a hard low frequency cutoff, and estimate the minimum number of AO channels required to produce sufficient image quality for coronagraphic suppression within a few diffraction widths of a central bright object (as is relevant to e.g., brown dwarf searches near late-type dwarf stars). We explore the effect of varying the occulting image- plane stop size and shape, and examine the trade-off between throughput and suppression of the image halo and Airy rings. We discuss our simulations in the context of results from the 241-channel Palomar Hale AO coronagraph system, and suggest approaches for future AO coronagraphic instruments on large telescopes

    Planetary system and star formation science with non-redundant masking on JWST

    Get PDF
    Non-redundant masking (NRM) is a high contrast high resolution technique that is relevant for future space missions dedicated to either general astrophysics or extrasolar planetary astronomy. NRM mitigates not only atmospheric but instrument-induced speckle noise as well. The recently added mask in the Fine Guidance Sensor Tunable Filter Imager (FGS-TFI) on the James Webb Space Telescope (JWST) will open up a search space between 50 and 400 mas at wavelengths longer than 3.8ÎĽm. Contrast of 104 will be achievable in a 10 ks exposure of an M = 7 star, with routine observing, target acquisition, and data calibration methods. NRM places protoplanets in Taurus as well as Jovians younger than 300Myr and more massive than 2MJ orbiting solar type stars within JWST's reach. Stars as bright as M = 3 will also be observable, thus meshing well with next-generation ground-based extreme adaptive optics coronagraphs. This parameter space is inaccessible to both JWST coronagraphs and future 30-m class ground-based telescopes, especially in the mid-IR. We show that NRM used on future space telescopes can deliver unsurpassed image contrast in key niches, while reducing mission risk associated with active primary mirrors

    An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    Full text link
    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass.Comment: 15 pages, 11 figures, 1 table; to appear in PASP, August 200

    Coronagraph design for an extreme adaptive optics system with spatially filtered wavefront sensing on segmented telescopes

    Get PDF
    High dynamic range coronagraphy targeted at discovering planets around nearby stars is often associated with monolithic, unobstructed aperture space telescopes. With the advent of extreme adaptive optics (ExAO) systems with thousands of sensing and correcting channels, the benefits of placing a near-infrared coronagraph on a large segmented mirror telescope become scientifically interesting. This is because increased aperture size produces a tremendous gain in achievable contrast at the same angular distance from a point source at Strehl ratios in excess of 90\% (and at lower Strehl ratios on future giant telescopes such as the Thirty Meter Telescope). We outline some of the design issues facing such a coronagraph, and model a band-limited coronagraph on an aperture with a Keck-like pupil. We examine the purely diffractive challenges facing the eXtreme AO Planetary Imager (XAOPI) given the Keck pupil geometry, notably its inter-segment gap spacing of 6~mm. Classical Lyot coronagraphs, with hard-edged occulting stops, are not efficient enough at suppressing diffracted light, given XAOPI's scientific goal of imaging a young Jupiter at a separation as close as 0.15 arcseconds (4λD at H on Keck) from its parent star. With a 4000 channel ExAO system using an anti-aliased spatially-filtered wavefront sensor planned for XAOPI, we wish to keep diffracted light due to coronagraphic design at least as low as the noise floor set by AO system limitations. We study the band-limited Lyot coronagraph (BLC) as a baseline design instead of the classical design because of its efficient light suppression, as well as its analytical simplicity. We also develop ways of investigating tolerancing coronagraphic mask fabrication by utilizing the BLC design's mathematical tractability

    Planetary system and star formation science with non-redundant masking on JWST

    Get PDF
    Non-redundant masking (NRM) is a high contrast high resolution technique that is relevant for future space missions dedicated to either general astrophysics or extrasolar planetary astronomy. On the ground NRM has opened a rich target space between 0.5 to 4 resolution elements from bright stars. It enabled moderate contrast very high angular resolution observations that have provided dynamical masses for targets beyond the resolution of the Hubble Space Telescope. Such observations challenge the best models of ultra-cool dwarf stars' atmospheres and interiors. The technique succeeds because it sidesteps the effects of speckle noise that plagues direct imaging at moderate Strehl ratios. On a space telescope NRM mitigates instrument-induced speckle noise, thus enabling high contrast even when images are barely diffraction-limited. The non-redundant mask in the Fine Guidance Sensor Tunable Filter Imager (FGS-TFI) on the James Webb Space Telescope (JWST) will open up a search space between 50 and 400 mas at wavelengths longer than 3.8ÎĽm. We present simulations that estimate achievable contrast on JWST, and report preliminary results of a testbed experiment using a mask with the same geometry as JWST's. We expect contrast of the order of 104 will be achievable in a 10 ks exposure of an M = 7 star, with observing, target acquisition, and data calibration methods common to the three other imaging instruments on board JWST. As an example of the potential science possible with NRM, we show that if a planet were responsible for clearing the inner 5 AU of the disk around HR8799, it would likely be detectable using JWST FGS-TFI's NRM at 4.6 microns. Stars as bright as M = 3 will also be observable with JWST's NRM, meshing well with next-generation ground-based extreme adaptive optics coronagraphs. JWST NRM's parameter space is inaccessible to both JWST coronagraphs and future 30-m class ground-based telescopes, especially in the mid-IR
    corecore