786 research outputs found

    Carbon-accounting methods and reforestation incentives

    Get PDF
    The emission of greenhouse gases, particularly carbon dioxide, and the consequent potential for climate change are the focus of increasing international concern. Temporary land-use change and forestry projects (LUCF) can be implemented to offset permanent emissions of carbon dioxide from the energy sector. Several approaches to accounting for carbon sequestration in LUCF projects have been proposed. In the present paper, the economic implications of adopting four of these approaches are evaluated in a normative context. The analysis is based on simulation of Australian farm–forestry systems. Results are interpreted from the standpoint of both investors and landholders. The role of baselines and transaction costs are discussed.Resource /Energy Economics and Policy,

    Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera

    Get PDF
    Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31-246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate alpha- and beta-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3' region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3' splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development.Australian National University PhD Scholarship Award to Sunita Biswas

    Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers

    Get PDF
    BACKGROUND Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, Ξ±, Ξ³ and Ξ΄, of a priority persistent pollutant, hexachlorocyclohexane (HCH). Sequence-structure-function differences contributing to the differences in their stereospecificity for Ξ±-, Ξ³-, and Ξ΄-HCH and enantiospecificity for (+)- and (-)-Ξ± -HCH are also discussed. METHODOLOGY/PRINCIPAL FINDINGS Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2(B90A) A110T, A111C, A110T/A111C and LinA1(B90A) were constructed using the FoldX computer algorithm. Turnover rates (min(-1)) showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. Ξ±-HCH was found to be the most preferred substrate by all LinA's, followed by the Ξ³ and then Ξ΄ isomer. CONCLUSIONS/SIGNIFICANCE The kinetic observations suggest that LinA-Ξ³1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins.This work was supported by the Indo-Australian Biotechnology Fund from the Department of Education Science and Technology (DEST), Australia and the Department of Biotechnology (DBT), India

    Determining the optimal strategy for reopening schools, the impact of test and trace interventions, and the risk of occurrence of a second COVID-19 epidemic wave in the UK: a modelling study

    Get PDF
    Background: As lockdown measures to slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begin to ease in the UK, it is important to assess the impact of any changes in policy, including school reopening and broader relaxation of physical distancing measures. We aimed to use an individual-based model to predict the impact of two possible strategies for reopening schools to all students in the UK from September, 2020, in combination with different assumptions about relaxation of physical distancing measures and the scale-up of testing. Methods: In this modelling study, we used Covasim, a stochastic individual-based model for transmission of SARS-CoV-2, calibrated to the UK epidemic. The model describes individuals' contact networks stratified into household, school, workplace, and community layers, and uses demographic and epidemiological data from the UK. We simulated six different scenarios, representing the combination of two school reopening strategies (full time and a part-time rota system with 50% of students attending school on alternate weeks) and three testing scenarios (68% contact tracing with no scale-up in testing, 68% contact tracing with sufficient testing to avoid a second COVID-19 wave, and 40% contact tracing with sufficient testing to avoid a second COVID-19 wave). We estimated the number of new infections, cases, and deaths, as well as the effective reproduction number (R) under different strategies. In a sensitivity analysis to account for uncertainties within the stochastic simulation, we also simulated infectiousness of children and young adults aged younger than 20 years at 50% relative to older ages (20 years and older). Findings: With increased levels of testing (between 59% and 87% of symptomatic people tested at some point during an active SARS-CoV-2 infection, depending on the scenario), and effective contact tracing and isolation, an epidemic rebound might be prevented. Assuming 68% of contacts could be traced, we estimate that 75% of individuals with symptomatic infection would need to be tested and positive cases isolated if schools return full-time in September, or 65% if a part-time rota system were used. If only 40% of contacts could be traced, these figures would increase to 87% and 75%, respectively. However, without these levels of testing and contact tracing, reopening of schools together with gradual relaxing of the lockdown measures are likely to induce a second wave that would peak in December, 2020, if schools open full-time in September, and in February, 2021, if a part-time rota system were adopted. In either case, the second wave would result in R rising above 1 and a resulting second wave of infections 2Β·0–2Β·3 times the size of the original COVID-19 wave. When infectiousness of children and young adults was varied from 100% to 50% of that of older ages, we still found that a comprehensive and effective test–trace–isolate strategy would be required to avoid a second COVID-19 wave. Interpretation: To prevent a second COVID-19 wave, relaxation of physical distancing, including reopening of schools, in the UK must be accompanied by large-scale, population-wide testing of symptomatic individuals and effective tracing of their contacts, followed by isolation of diagnosed individuals. Funding: None

    Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera

    Get PDF
    Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31–246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate Ξ±- and Ξ²-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3β€² region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3β€² splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development

    Kinetic and Sequence-Structure-Function Analysis of Known LinA Variants with Different Hexachlorocyclohexane Isomers

    Get PDF
    BACKGROUND: Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, Ξ±, Ξ³ and Ξ΄, of a priority persistent pollutant, hexachlorocyclohexane (HCH). Sequence-structure-function differences contributing to the differences in their stereospecificity for Ξ±-, Ξ³-, and Ξ΄-HCH and enantiospecificity for (+)- and (-)-Ξ± -HCH are also discussed. METHODOLOGY/PRINCIPAL FINDINGS: Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2(B90A) A110T, A111C, A110T/A111C and LinA1(B90A) were constructed using the FoldX computer algorithm. Turnover rates (min(-1)) showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. Ξ±-HCH was found to be the most preferred substrate by all LinA's, followed by the Ξ³ and then Ξ΄ isomer. CONCLUSIONS/SIGNIFICANCE: The kinetic observations suggest that LinA-Ξ³1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins

    Chiasma

    Get PDF
    Newspaper reporting on events at the Boston University School of Medicine in the 1960s

    Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems

    Get PDF
    Anthropogenic impacts increasingly drive ecological and evolutionary processes at many spatio-temporal scales, demanding greater capacity to predict and manage their consequences. This is particularly true for agro-ecosystems, which not only comprise a significant proportion of land use, but which also involve conflicting imperatives to expand or intensify production while simultaneously reducing environmental impacts. These imperatives reinforce the likelihood of further major changes in agriculture over the next 30–40 years. Key transformations include genetic technologies as well as changes in land use. The use of evolutionary principles is not new in agriculture (e.g. crop breeding, domestication of animals, management of selection for pest resistance), but given land-use trends and other transformative processes in production landscapes, ecological and evolutionary research in agro-ecosystems must consider such issues in a broader systems context. Here, we focus on biotic interactions involving pests and pathogens as exemplars of situations where integration of agronomic, ecological and evolutionary perspectives has practical value. Although their presence in agro-ecosystems may be new, many traits involved in these associations evolved in natural settings. We advocate the use of predictive frameworks based on evolutionary models as pre-emptive management tools and identify some specific research opportunities to facilitate this. We conclude with a brief discussion of multidisciplinary approaches in applied evolutionary problems

    Heterologous Expression and Biochemical Characterisation of Fourteen Esterases from Helicoverpa armigera

    No full text
    Esterases have recurrently been implicated in insecticide resistance in Helicoverpa armigera but little is known about the underlying molecular mechanisms. We used a baculovirus system to express 14 of 30 full-length esterase genes so far identified from midgut cDNA libraries of this species. All 14 produced esterase isozymes after native PAGE and the isozymes for seven of them migrated to two regions of the gel previously associated with both organophosphate and pyrethroid resistance in various strains. Thirteen of the enzymes obtained in sufficient yield for further analysis all showed tight binding to organophosphates and low but measurable organophosphate hydrolase activity. However there was no clear difference in activity between the isozymes from regions associated with resistance and those from elsewhere in the zymogram, or between eight of the isozymes from a phylogenetic clade previously associated with resistance in proteomic and quantitative rtPCR experiments and five others not so associated. By contrast, the enzymes differed markedly in their activities against nine pyrethroid isomers and the enzymes with highest activity for the most insecticidal isomers were from regions of the gel and, in some cases, the phylogeny that had previously been associated with pyrethroid resistance. Phospholipase treatment confirmed predictions from sequence analysis that three of the isozymes were GPI anchored. This unusual feature among carboxylesterases has previously been suggested to underpin an association that some authors have noted between esterases and resistance to the Cry1Ac toxin from Bacillus thuringiensis. However these three isozymes did not migrate to the zymogram region previously associated with Cry1Ac resistance.This study was supported by an Australian Postgraduate Award and Top-up Scholarship from the Cotton Catchment Cummunities CRC to Claire Farnsworth and the China Scholarship Council to Yongqiang Li. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore