2,619 research outputs found
Modulational-instability-free pulse compression in anti-resonant hollow-core photonic crystal fiber
Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient
nonlinear temporal compression of femtosecond laser pulses, two main schemes
being direct soliton-effect self-compression, and spectral broadening followed
by phase compensation. To obtain stable compressed pulses, it is crucial to
avoid decoherence through modulational instability (MI) during spectral
broadening. Here we show that changes in dispersion due to spectral
anti-crossings between the fundamental core mode and core wall resonances in
anti-resonant-guiding hollow-core PCF can strongly alter the MI gain spectrum,
enabling MI-free pulse compression for optimized fiber designs. In addition,
higher-order dispersion can introduce MI even when the pump pulses lie in the
normal dispersion region
Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes
Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of
fused silica while being free of Raman scattering. It also has a much higher
optical damage threshold and a transparency window that extends from the UV to
the infrared. We report the observation of nonlinear phenomena, such as
self-phase modulation, in hollow-core photonic crystal fiber filled with
supercritical Xe. In the subcritical regime, intermodal four-wave-mixing
resulted in the generation of UV light in the HE12 mode. The normal dispersion
of the fiber at high pressures means that spectral broadening can clearly
obtained without influence from soliton effects or material damage
Transformation Optics with Photonic Band Gap Media
We introduce a class of optical media based on adiabatically modulated,
dielectric-only, and potentially extremely low-loss, photonic crystals. The
media we describe represent a generalization of the eikonal limit of
transformation optics (TO). The foundation of the concept is the possibility to
fit frequency isosurfaces in the k-space of photonic crystals with elliptic
surfaces, allowing them to mimic the dispersion relation of light in
anisotropic effective media. Photonic crystal cloaks and other TO devices
operating at visible wavelengths can be constructed from optically transparent
substances like glasses, whose attenuation coefficient can be as small as 10
dB/km, suggesting the TO design methodology can be applied to the development
of optical devices not limited by the losses inherent to metal-based, passive
metamaterials.Comment: 4 pages, 4 figure
Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow Core Photonic Crystal Fibers
Broadband-tunable sources of circularly-polarized light are crucial in fields
such as laser science, biomedicine and spectroscopy. Conventional sources rely
on nonlinear wavelength conversion and polarization control using standard
optical components, and are limited by the availability of suitably transparent
crystals and glasses. Although gas-filled hollow-core photonic crystal fiber
provides pressure-tunable dispersion, long well-controlled optical
path-lengths, and high Raman conversion efficiency, it is unable to preserve
circular polarization state, typically exhibiting weak linear birefringence.
Here we report a revolutionary approach based on helically-twisted hollow-core
photonic crystal fiber, which displays circular birefringence, thus robustly
maintaining circular polarization state against external perturbations. This
makes it possible to generate pure circularly-polarized Stokes and anti-Stokes
signals by rotational Raman scattering in hydrogen. The polarization state of
the frequency-shifted Raman bands can be continuously varied by tuning the gas
pressure in the vicinity of the gain suppression point. The results pave the
way to a new generation of compact and efficient fiber-based sources of
broadband light with fully-controllable polarization state.Comment: 5 pages, 4 figure
Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber
We numerically investigate self-frequency blueshifting of a fundamental soliton in a gas-filled hollow-core photonic crystal fiber. Because of the changing underlying soliton parameters, the blueshift gives rise to adiabatic soliton compression. Based on these features, we propose a device that enables frequency shifting over an octave and pulse compression from 30 fs down to 2.3 fs.W. Chang is supported by the Australian Research
Council (DE130101432)
Soliton blue-shift in tapered photonic crystal fiber
We show that solitons undergo a strong blue shift in fibers with a dispersion
landscape that varies along the direction of propagation. The experiments are
based on a small-core photonic crystal fiber, tapered to have a core diameter
that varies continuously along its length, resulting in a zero-dispersion
wavelength that moves from 731 nm to 640 nm over the transition. The central
wavelength of a soliton translates over 400 nm towards shorter wavelength. This
accompanied by strong emission of radiation into the UV and IR spectral region.
The experimental results are confirmed by numerical simulation.Comment: 10 pages, 4 figure
An ion trap built with photonic crystal fibre technology
We demonstrate a surface-electrode ion trap fabricated using techniques
transferred from the manufacture of photonic-crystal fibres. This provides a
relatively straightforward route for realizing traps with an electrode
structure on the 100 micron scale with high optical access. We demonstrate the
basic functionality of the trap by cooling a single ion to the quantum ground
state, allowing us to measure a heating rate from the ground state of 787(24)
quanta/s. Variation of the fabrication procedure used here may provide access
to traps in this geometry with trap scales between 100 um and 10 um.Comment: 6 pages, 4 figure
Enhanced soliton transport in quasi-periodic lattices with short-range aperiodicity
We study linear transmission and nonlinear soliton transport through
quasi-periodic structures, which profiles are described by multiple modulation
frequencies. We show that resonant scattering at mixed-frequency resonances
limits transmission efficiency of localized wave packets, leading to radiation
and possible trapping of solitons. We obtain an explicit analytical expression
for optimal quasi-periodic lattice profiles, where additional aperiodic
modulations suppress mixed-frequency resonances, resulting in dramatic
enhancement of soliton mobility. Our results can be applied to the design of
photonic waveguide structures, and arrays of magnetic micro-traps for atomic
Bose-Einstein condensates.Comment: 4 pages, 4 figure
EM wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects
We systematically study a collection of refractive phenomena that can
possibly occur at the interface of a two-dimensional photonic crystal, with the
use of the wave vector diagram formalism. Cases with a single propagating beam
(in the positive or the negative direction) as well as cases with birefringence
were observed. We examine carefully the conditions to obtain a single
propagating beam inside the photonic crystal lattice. Our results indicate,
that the presence of multiple reflected beams in the medium of incidence is
neither a prerequisite nor does it imply multiple refracted beams. We
characterize our results in respect to the origin of the propagating beam and
the nature of propagation (left-handed or not). We identified four distinct
cases that lead to a negatively refracted beam. Under these findings, the
definition of phase velocity in a periodic medium is revisited and its physical
interpretation discussed. To determine the ``rightness'' of propagation, we
propose a wedge-type experiment. We discuss the intricate details for an
appropriate wedge design for different types of cases in triangular and square
structures. We extend our theoretical analysis, and examine our conclusions as
one moves from the limit of photonic crystals with high index contrast between
the constituent dielectrics to photonic crystals with low modulation of the
refractive index. Finally, we examine the ``rightness'' of propagation in the
one-dimensional multilayer medium, and obtain conditions that are different
from those of two-dimensional systems.Comment: 65 pages, 17 figures, submitted to Phys. Rev.
- …