7 research outputs found
A review of diagnostic and functional imaging in headache
The neuroimaging of
headache patients has revolutionised
our understanding of the pathophysiology
of primary headaches and provided
unique insights into these syndromes.
Modern imaging studies
point, together with the clinical picture,
towards a central triggering
cause. The early functional imaging
work using positron emission
tomography shed light on the genesis
of some syndromes, and has
recently been refined, implying that
the observed activation in migraine
(brainstem) and in several trigeminal-autonomic headaches (hypothalamic
grey) is involved in the pain
process in either a permissive or
triggering manner rather than simply
as a response to first-division nociception
per se. Using the advanced
method of voxel-based morphometry,
it has been suggested that there
is a correlation between the brain
area activated specifically in acute
cluster headache — the posterior
hypothalamic grey matter — and an
increase in grey matter in the same
region. No structural changes have
been found for migraine and medication
overuse headache, whereas
patients with chronic tension-type
headache demonstrated a significant
grey matter decrease in regions
known to be involved in pain processing.
Modern neuroimaging thus
clearly suggests that most primary
headache syndromes are predominantly
driven from the brain, activating
the trigeminovascular reflex and
needing therapeutics that act on both
sides: centrally and peripherally
2D characterization of near-surface V P/V S: surface-wave dispersion inversion versus refraction tomography
International audienceThe joint study of pressure (P-) and shear (S-) wave velocities (Vp and Vs ), as well as their ratio (Vp /Vs), has been used for many years at large scales but remains marginal in near-surface applications. For these applications, and are generally retrieved with seismic refraction tomography combining P and SH (shear-horizontal) waves, thus requiring two separate acquisitions. Surface-wave prospecting methods are proposed here as an alternative to SH-wave tomography in order to retrieve pseudo-2D Vs sections from typical P-wave shot gathers and assess the applicability of combined P-wave refraction tomography and surface-wave dispersion analysis to estimate Vp/Vs ratio. We carried out a simultaneous P- and surface-wave survey on a well-characterized granite-micaschists contact at Ploemeur hydrological observatory (France), supplemented with an SH-wave acquisition along the same line in order to compare Vs results obtained from SH-wave refraction tomography and surface-wave profiling. Travel-time tomography was performed with P- and SH- wave first arrivals observed along the line to retrieve Vtomo p and Vtomo s models. Windowing and stacking techniques were then used to extract evenly spaced dispersion data from P-wave shot gathers along the line. Successive 1D Monte Carlo inversions of these dispersion data were performed using fixed Vp values extracted from Vtomo p the model and no lateral constraints between two adjacent 1D inversions. The resulting 1D Vsw s models were then assembled to create a pseudo-2D Vsw s section, which appears to be correctly matching the general features observed on the section. If the pseudo-section is characterized by strong velocity incertainties in the deepest layers, it provides a more detailed description of the lateral variations in the shallow layers. Theoretical dispersion curves were also computed along the line with both and models. While the dispersion curves computed from models provide results consistent with the coherent maxima observed on dispersion images, dispersion curves computed from models are generally not fitting the observed propagation modes at low frequency. Surface-wave analysis could therefore improve models both in terms of reliability and ability to describe lateral variations. Finally, we were able to compute / sections from both and models. The two sections present similar features, but the section obtained from shows a higher lateral resolution and is consistent with the features observed on electrical resistivity tomography, thus validating our approach for retrieving Vp/Vs ratio from combined P-wave tomography and surface-wave profiling