3 research outputs found

    AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice

    No full text
    Objectives To aid in selecting the optimal artificial intelligence (AI) solution for clinical application, we directly compared performances of selected representative custom-trained or commercial classification, detection and segmentation models for fracture detection on musculoskeletal radiographs of the distal radius by aligning their outputs.Design and setting This single-centre retrospective study was conducted on a random subset of emergency department radiographs from 2008 to 2018 of the distal radius in Germany.Materials and methods An image set was created to be compatible with training and testing classification and segmentation models by annotating examinations for fractures and overlaying fracture masks, if applicable. Representative classification and segmentation models were trained on 80% of the data. After output binarisation, their derived fracture detection performances as well as that of a standard commercially available solution were compared on the remaining X-rays (20%) using mainly accuracy and area under the receiver operating characteristic (AUROC).Results A total of 2856 examinations with 712 (24.9%) fractures were included in the analysis. Accuracies reached up to 0.97 for the classification model, 0.94 for the segmentation model and 0.95 for BoneView. Cohen’s kappa was at least 0.80 in pairwise comparisons, while Fleiss’ kappa was 0.83 for all models. Fracture predictions were visualised with all three methods at different levels of detail, ranking from downsampled image region for classification over bounding box for detection to single pixel-level delineation for segmentation.Conclusions All three investigated approaches reached high performances for detection of distal radius fractures with simple preprocessing and postprocessing protocols on the custom-trained models. Despite their underlying structural differences, selection of one’s fracture analysis AI tool in the frame of this study reduces to the desired flavour of automation: automated classification, AI-assisted manual fracture reading or minimised false negatives

    Evaluation of computed tomography settings in the context of visualization and discrimination of low dose injections of a novel liquid soft tissue fiducial marker in head and neck imaging

    No full text
    Background!#!Intraoperative incorporation of radiopaque fiducial markers at the tumor resection surface can provide useful assistance in identifying the tumor bed in postoperative imaging for RT planning and radiological follow-up. Besides titanium clips, iodine containing injectable liquid fiducial markers represent an option that has emerged more recently for this purpose. In this study, marking oral soft tissue resection surfaces, applying low dose injections of a novel Conformité Européenne (CE)-marked liquid fiducial marker based on sucrose acetoisobutyrate (SAIB) and iodinated SAIB (x-SAIB) was investigated.!##!Methods!#!Visibility and discriminability of low dose injections of SAIB/x-SAIB (10 µl, 20 µl, 30 µl) were systematically studied at different kV settings used in clinical routine in an ex-vivo porcine mandible model. Transferability of the preclinical results into the clinical setting and applicability of DE-CT were investigated in initial patients.!##!Results!#!Markers created by injection volumes as low as 10 µl were visible in CT imaging at all kV settings applied in clinical routine (70-120 kV). An injection volume of 30 µl allowed differentiation from an injection volume of 10 µl. In a total of 118 injections performed in two head and neck cancer patients, markers were clearly visible in 83% and 86% of injections. DE-CT allowed for differentiation between SAIB/x-SAIB markers and other hyperdense structures.!##!Conclusions!#!Injection of low doses of SAIB/x-SAIB was found to be a feasible approach to mark oral soft tissue resection surfaces, with injection volumes as low as 10 µl found to be visible at all kV settings applied in clinical routine. With the application of SAIB/x-SAIB reported for tumors of different organs already, mostly applying relatively large volumes for IGRT, this study adds information on the applicability of low dose injections to facilitate identification of the tumor bed in postoperative CT and on performance of the marker at different kV settings used in clinical routine

    A Content-Aware Chatbot based on GPT 4 provides trustworthy Recommendations for Cone Beam Computed Tomography Guidelines in Dental Imaging.

    No full text
    OBJECTIVES To develop a content-aware chatbot based on GPT-3.5-Turbo and GPT-4 with specialized knowledge on the German S2 Cone-Beam CT (CBCT) dental imaging guideline and to compare the performance against humans. METHODS The LlamaIndex software library was used to integrate the guideline context into the chatbots. Based on the CBCT S2 guideline, 40 questions were posed to content-aware chatbots and early career and senior practitioners with different levels of experience served as reference. The chatbots' performance was compared in terms of recommendation accuracy and explanation quality. Chi-square test and one-tailed Wilcoxon signed rank test evaluated accuracy and explanation quality, respectively. RESULTS The GPT-4 based chatbot provided 100% correct recommendations and superior explanation quality compared to the one based on GPT3.5-Turbo (87.5% vs. 57.5% for GPT-3.5-Turbo; p = 0.003). Moreover, it outperformed early career practitioners in correct answers (p = 0.002 and p = 0.032) and earned higher trust than the chatbot using GPT-3.5-Turbo (p = 0.006). CONCLUSIONS A content-aware chatbot using GPT-4 reliably provided recommendations according to current consensus guidelines. The responses were deemed trustworthy and transparent and therefore facilitate the integration of artificial intelligence into clinical decision-making
    corecore