2 research outputs found

    Pre-correction Adaptive Optics performance of a 10 km Laser Link

    Get PDF
    For the next generation of very high throughput communication satellites, free-space optical (FSO) communication between ground stations and geostationary telecommunication satellites is likely to replace conventional RF links. To mitigate atmospheric turbulence, TNO and DLR propose Adaptive Optics (AO) to apply uplink pre-correction. In order to demonstrate the feasibility of AO pre-correction an FSO link has been tested over a 10 km range. This paper shows that AO pre-correction is most advantageous for low point ahead angles (PAAs), as expected. In addition, an optimum AO precorrection performance is found at 16 AO modes for the experimental conditions. For the specific test site, tip-tilt precorrection accounted for 4.5 dB improvement in the link budget. Higher order AO modes accounted for another 1.5 dB improvement in the link budget. From these results it is concluded that AO pre-correction can effectively improve highthroughput optical feeder links

    Optical Feeder Link Program and first Adaptive Optics Test Results

    No full text
    TNO and DLR envision optical free-space communication between ground stations and geostationary telecommunication satellites to replace the traditional RF links for the next generation of Very High Throughput Satellites. To mitigate atmospheric turbulence, an Adaptive Optics (AO) system will be used. TNO and DLR are developing breadboards to validate Terabit/s communication links using an AO system. In this paper the breadboard activities and first results of the sub-systems will be presented. Performance of these subsystems will be evaluated for viability of terabit/s optical feeder links
    corecore