50 research outputs found

    An Intronic Sequence Element Mediates Both Activation and Repression of Rat Fibroblast Growth Factor Receptor 2 Pre-mRNA Splicing

    Get PDF
    Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) is an example of highly regulated alternative splicing in which exons IIIb and IIIc are utilized in a mutually exclusive manner in different cell types. The importance of this splicing choice is highlighted by studies which indicate that deregulation of the FGF-R2 splicing is associated with progression of prostate cancer. Loss of expression of a IIIb exon-containing isoform of FGF-R2 [FGF-R2 (IIIb)] accompanies the transition of a well-differentiated, androgen-dependent rat prostate cancer cell line, DT3, to the more aggressive, androgen-independent AT3 cell line. We have used transfection of rat FGF-R2 minigenes into DT3 and AT3 cancer cell lines to study the mechanisms that control alternative splicing of rat FGF-R2. Our results support a model in which an important cis-acting element located in the intron between these alternative exons mediates activation of splicing using the upstream IIIb exon and repression of the downstream IIIc exon in DT3 cells. This element consists of 57 nucleotides (nt) beginning 917 nt downstream of the IIIb exon. Analysis of mutants further demonstrates that an 18-nt “core sequence” within this element is most crucial for its function. Based on our observations, we have termed this sequence element ISAR (for intronic splicing activator and repressor), and we suggest that factors which bind this sequence are required for maintenance of expression of the FGF-R2 (IIIb) isoform

    A Novel Intronic cis Element, ISE/ISS-3, Regulates Rat Fibroblast Growth Factor Receptor 2 Splicing through Activation of an Upstream Exon and Repression of a Downstream Exon Containing a Noncanonical Branch Point Sequence

    No full text
    Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for “intronic splicing enhancer-intronic splicing silencer 3”). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements
    corecore