5,902 research outputs found

    Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector

    Full text link
    We present results demonstrating the time resolution and ÎĽ\mu/e separation capabilities with a new concept of an EAS detector capable for measurements of cosmic rays arriving with large zenith angles. This kind of detector has been designed to be a part of a large area (several square kilometers) surface array designed to measure Ultra High Energy (10-200 PeV) Ď„\tau neutrinos using the Earth-skimming technique. A criteria to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.Comment: accepted by Astrophysical Journal on January 12 2015, 16 pages 3 Figure

    Application of the Trace Formula in Pseudointegrable Systems

    Full text link
    We apply periodic-orbit theory to calculate the integrated density of states N(k)N(k) from the periodic orbits of pseudointegrable polygon and barrier billiards. We show that the results agree so well with the results obtained from direct diagonalization of the Schr\"odinger equation, that about the first 100 eigenvalues can be obtained directly from the periodic-orbit calculations in good accuracy.Comment: 5 Pages, 4 Figures, submitted to Phys. Rev.

    Periodic orbit theory and spectral rigidity in pseudointegrable systems

    Full text link
    We calculate numerically the periodic orbits of pseudointegrable systems of low genus numbers gg that arise from rectangular systems with one or two salient corners. From the periodic orbits, we calculate the spectral rigidity Δ3(L)\Delta_3(L) using semiclassical quantum mechanics with LL reaching up to quite large values. We find that the diagonal approximation is applicable when averaging over a suitable energy interval. Comparing systems of various shapes we find that our results agree well with Δ3\Delta_3 calculated directly from the eigenvalues by spectral statistics. Therefore, additional terms as e.g. diffraction terms seem to be small in the case of the systems investigated in this work. By reducing the size of the corners, the spectral statistics of our pseudointegrable systems approaches the one of an integrable system, whereas very large differences between integrable and pseudointegrable systems occur, when the salient corners are large. Both types of behavior can be well understood by the properties of the periodic orbits in the system

    Robertson-Walker fluid sources endowed with rotation characterised by quadratic terms in angular velocity parameter

    Full text link
    Einstein's equations for a Robertson-Walker fluid source endowed with rotation Einstein's equations for a Robertson-Walker fluid source endowed with rotation are presented upto and including quadratic terms in angular velocity parameter. A family of analytic solutions are obtained for the case in which the source angular velocity is purely time-dependent. A subclass of solutions is presented which merge smoothly to homogeneous rotating and non-rotating central sources. The particular solution for dust endowed with rotation is presented. In all cases explicit expressions, depending sinusoidally on polar angle, are given for the density and internal supporting pressure of the rotating source. In addition to the non-zero axial velocity of the fluid particles it is shown that there is also a radial component of velocity which vanishes only at the poles. The velocity four-vector has a zero component between poles

    HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973--2011

    Get PDF
    [Abridged] This paper describes the creation of HadISD: an automatically quality-controlled synoptic resolution dataset of temperature, dewpoint temperature, sea-level pressure, wind speed, wind direction and cloud cover from global weather stations for 1973--2011. The full dataset consists of over 6000 stations, with 3427 long-term stations deemed to have sufficient sampling and quality for climate applications requiring sub-daily resolution. As with other surface datasets, coverage is heavily skewed towards Northern Hemisphere mid-latitudes. The dataset is constructed from a large pre-existing ASCII flatfile data bank that represents over a decade of substantial effort at data retrieval, reformatting and provision. These raw data have had varying levels of quality control applied to them by individual data providers. The work proceeded in several steps: merging stations with multiple reporting identifiers; reformatting to netCDF; quality control; and then filtering to form a final dataset. Particular attention has been paid to maintaining true extreme values where possible within an automated, objective process. Detailed validation has been performed on a subset of global stations and also on UK data using known extreme events to help finalise the QC tests. Further validation was performed on a selection of extreme events world-wide (Hurricane Katrina in 2005, the cold snap in Alaska in 1989 and heat waves in SE Australia in 2009). Although the filtering has removed the poorest station records, no attempt has been made to homogenise the data thus far. Hence non-climatic, time-varying errors may still exist in many of the individual station records and care is needed in inferring long-term trends from these data. A version-control system has been constructed for this dataset to allow for the clear documentation of any updates and corrections in the future.Comment: Published in Climate of the Past, www.clim-past.net/8/1649/2012/. 31 pages, 23 figures, 9 pages. For data see http://www.metoffice.gov.uk/hadobs/hadis

    Perturbations of a Universe Filled with Dust and Radiation

    Get PDF
    A first-order perturbation approach to k=0k=0 Friedmann cosmologies filled with dust and radiation is developed. Adopting the coordinate gauge comoving with the perturbed matter, and neglecting the vorticity of the radiation, a pair of coupled equations is obtained for the trace hh of the metric perturbations and for the velocity potential vv. A power series solution with upwards cutoff exists such that the leading terms for large values of the dimensionless time Îľ\xi agree with the relatively growing terms of the dust solution of Sachs and Wolfe.Comment: 9 pp, typeset in late

    Lagrangian description of fluid flow with pressure in relativistic cosmology

    Get PDF
    The Lagrangian description of fluid flow in relativistic cosmology is extended to the case of flow accelerated by pressure. In the description, the entropy and the vorticity are obtained exactly for the barotropic equation of state. In order to determine the metric, the Einstein equation is solved perturbatively, when metric fluctuations are small but entropy inhomogeneities are large. Thus, the present formalism is applicable to the case when the inhomogeneities are small in the large scale but locally nonlinear.Comment: 11 pages (RevTeX); accepted for publication in Phys. Rev.

    The back reaction and the effective Einstein's equation for the Universe with ideal fluid cosmological perturbations

    Get PDF
    We investigate the back reaction of cosmological perturbations on the evolution of the Universe using the renormalization group method. Starting from the second order perturbed Einstein's equation, we renormalize a scale factor of the Universe and derive the evolution equation for the effective scale factor which includes back reaction due to inhomogeneities of the Universe. The resulting equation has the same form as the standard Friedman-Robertson-Walker equation with the effective energy density and pressure which represent the back reaction effect.Comment: 16 pages, to appear in Phys. Rev.

    Back Reaction Problem in the Inflationary Universe

    Full text link
    We investigate the back reaction of cosmological perturbations on an inflationary universe using the renormalization-group method. The second-order zero mode solution which appears by the nonlinearity of the Einstein equation is regarded as a secular term of a perturbative expansion, we renormalized a constant of integration contained in the background solution and absorbed the secular term to this constant in a gauge-invariant manner. The resultant renormalization-group equation describes the back reaction effect of inhomogeneity on the background universe. For scalar type classical perturbation, by solving the renormalization-group equation, we find that the back reaction of the long wavelength fluctuation works as a positive spatial curvature, and the short wavelength fluctuation works as a radiation fluid. For the long wavelength quantum fluctuation, the effect of back reaction is equivalent to a negative spatial curvature.Comment: 17 page

    Effects of S-wave thresholds

    Get PDF
    The opening of a new S-wave threshold is frequently accompanied by an abrupt dip in the magnitude of an amplitude for an already-open channel. One familiar example is the behavior of the I=0 S-wave ππ\pi \pi scattering amplitude at KKˉK \bar K threshold. Numerous other examples of this phenomenon in recent data are noted, and a unified description of the underlying dynamics is sought.Comment: 17 pages, 2 figures. Two additional references; typographic correction. To be published in Phys. Rev.
    • …
    corecore