4 research outputs found

    Fabrication of a New Electrochemical Sensor Based on Bimetal Oxide for the Detection of Furazolidone in Biological Samples

    No full text
    This study utilized a simple hydrothermal method to synthesize nickel molybdenum oxide (NMO) for the detection of furazolidone (FZE). Our synthesized NMO was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron spectroscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX). The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to detect the FZE. Under optimized conditions, the obtained results showed that the NMO had an excellent electrocatalytic property towards FZE. As a result, NMO/GCE showed a good linear range of 0.001–1765 µM, an excellent detection limit (LOD) of 0.02 µM, and sensitivity of 0.2042 µA µM−1 cm−2

    Fabrication of a New Electrochemical Sensor Based on Bimetal Oxide for the Detection of Furazolidone in Biological Samples

    No full text
    This study utilized a simple hydrothermal method to synthesize nickel molybdenum oxide (NMO) for the detection of furazolidone (FZE). Our synthesized NMO was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron spectroscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX). The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to detect the FZE. Under optimized conditions, the obtained results showed that the NMO had an excellent electrocatalytic property towards FZE. As a result, NMO/GCE showed a good linear range of 0.001–1765 µM, an excellent detection limit (LOD) of 0.02 µM, and sensitivity of 0.2042 µA µM−1 cm−2

    Electrochemical Monitoring of Sulfadiazine via La@CeO Incorporated with Reduced Graphene Oxide

    No full text
    In recent years, indiscriminate consumption and dumping of antibiotics have become destructive to human health and causes ecotoxicological pollution. Here, the irregular particle nanosized dendrite structure of lanthanum-doped cerium oxide (LCO) decorated with sheet-like reduced graphene oxide (RGO) composite was utilized to detect the sulfonamide-based drug sulfadiazine (SZ). LCO@RGO nanocomposite was prepared using the hydrothermal method, the synergistic effect between LCO and RGO facilitates electron transferability and conductivity which enhances the electrochemical properties toward the detection of SZ. The detection of SZ expressed a lower detection limit (0.005 µM) and linear range (0.01–265 µM) of the fabricated LCO@RGO/GCE electrode toward SZ, analyzed using the highly sensitive DPV technique. Also, DPV was utilized to determined shows good repeatability, reproducibility, and storage stability of fabricated LCO@RGO/GCE. Moreover, effective practicability was proven in human blood serum and river water samples with great recovery results. All the above probes the synthesized LCO@RGO’s thriving and outstanding electrocatalytic performance of this nanocomposite’s highly sensitive detection of SZ in real biological and environmental samples

    Fabrication of an Electrocatalyst Based on Rare Earth Manganites Incorporated with Carbon Nanofiber Hybrids: An Efficient Electrochemical Biosensor for the Detection of Anti-Inflammatory Drug Mefenamic Acid

    No full text
    Pharmaceutical and personal care products are emerging as a new category of environmental pollution. Analytical drug detection from a biological sample for detection is still crucial today. Mefenamic acid (MA) is an anti-inflammatory drug utilized for its antipyretic and analgesic properties, which is harmful to patients at higher dosages and is also recognized as a chemical pollutant that harms the environment. In this view, Dysprosium manganite/carbon nanofiber (DMO/CNF) was prepared by hydrothermal method for the electrochemical detection of MA. DMO/CNF/GCE exhibits high selectivity, excellent anti-interference, good stability, and reproducibility toward the detection of MA. The enhanced electrochemical performance of DMO/CNF/GCE was attributed to their synergetic interaction. Under optimized conditions, DMO/CNF/GCE shows a wide linear range of 0.01–741 μM and a low LOD of 0.009 μM. Satisfactory recoveries were obtained for human blood and tablet samples. Thus, the proposed DMO/CNF nanocomposite emerges as a promising material for the detection of MA
    corecore