757 research outputs found

    Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775

    Get PDF
    Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.

    Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model

    Get PDF
    We present results obtained in the calculation of nuclear ground state properties in relativistic Hartree approximation using a Lagrangian whose QCD-scaled coupling constants are all natural (dimensionless and of order 1). Our model consists of four-, six-, and eight-fermion point couplings (contact interactions) together with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the corresponding mesonic interactions. The coupling constants have been determined in a self-consistent procedure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground state properties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants are all natural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in Phys. Rev.

    Beyond screen time: a synergistic approach to a more comprehensive assessment of family media exposure during early childhood

    Get PDF
    Digital media availability has surged over the past decade. Because of a lack of comprehensive measurement tools, this rapid growth in access to digital media is accompanied by a scarcity of research examining the family media context and sociocognitive outcomes. There is also little cross-cultural research in families with young children. Modern media are mobile, interactive, and often short in duration, making them difficult to remember when caregivers respond to surveys about media use. The Comprehensive Assessment of Family Media Exposure (CAFE) Consortium has developed a novel tool to measure household media use through a web-based questionnaire, time-use diary, and passive-sensing app installed on family mobile devices. The goal of developing a comprehensive assessment of family media exposure was to take into account the contextual factors of media use and improve upon the limitations of existing self-report measures, while creating a consistent, scalable, and cost-effective tool. The CAFE tool captures the content and context of early media exposure and addresses the limitations of prior media measurement approaches. Preliminary data collected using this measure have been integrated into a shared visualization platform. In this perspective article, we take a tools-of-the-trade approach (Oakes, 2010) to describe four challenges associated with measuring household media exposure in families with young children: measuring attitudes and practices; capturing content and context; measuring short bursts of mobile device usage; and integrating data to capture the complexity of household media usage. We illustrate how each of these challenges can be addressed with preliminary data collected with the CAFE tool and visualized on our dashboard. We conclude with future directions including plans to test reliability, validity, and generalizability of these measures

    Pairing Properties In Relativistic Mean Field Models Obtained From Effective Field Theory

    Get PDF
    We apply recently developed effective field theory nuclear models in mean field approximation (parameter sets G1 and G2) to describe ground-state properties of nuclei from the valley of β\beta-stability up to the drip lines. For faster calculations of open-shell nuclei we employ a modified BCS approach which takes into account quasi-bound levels owing to their centrifugal barrier, with a constant pairing strength. We test this simple prescription by comparing with available Hartree-plus-Bogoliubov results. Using the new effective parameter sets we then compute separation energies, density distributions and spin--orbit potentials in isotopic (isotonic) chains of nuclei with magic neutron (proton) numbers. The new forces describe the experimental systematics similarly to conventional non-linear σω\sigma-\omega relativistic force parameters like NL3.Comment: 29 pages, 17 figures, accepted for publication in PR

    Sensitivities of the Proton-Nucleus Elastical Scattering Observables of 6He and 8He at Intermediate Energies

    Get PDF
    We investigate the use of proton-nucleus elastic scattering experiments using secondary beams of 6He and 8He to determine the physical structure of these nuclei. The sensitivity of these experiments to nuclear structure is examined by using four different nuclear structure models with different spatial features using a full-folding optical potential model. The results show that elastic scattering at intermediate energies (<100 MeV per nucleon) is not a good constraint to be used to determine features of structure. Therefore researchers should look elsewhere to put constraints on the ground state wave function of the 6He and 8He nuclei.Comment: To be published in Phys. Rev.

    The Axial-Vector Current in Nuclear Many-Body Physics

    Full text link
    Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body problem. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ\sigma) and vector (ω\omega) fields, and isovector vector (ρ\rho) fields. The theory exhibits a nonlinear realization of SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of quantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to systematically expand the effective lagrangian in powers of the meson fields (and their derivatives) and to reliably truncate the expansion after the first few orders. Here it is shown that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion, satisfy both PCAC and the Goldberger--Treiman relation, and it is verified that the corresponding vector and axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty, revtex4.cls, plus 14 figures; two sentences added in Summary; two references adde

    Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV Au+Au Collisions

    Get PDF
    A data-driven method was applied to measurements of Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance Δη\Delta\eta-dependent and Δη\Delta\eta-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is Δη\Delta\eta-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η\eta within the measured range of pseudorapidity η<1|\eta|<1. The relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.)34\% \pm 2\% (stat.) \pm 3\% (sys.) for particles of transverse momentum pTp_{T} less than 22 GeV/cc. The Δη\Delta\eta-dependent part may be attributed to nonflow correlations, and is found to be 5%±2%(sys.)5\% \pm 2\% (sys.) relative to the flow of the measured second harmonic cumulant at Δη>0.7|\Delta\eta| > 0.7
    corecore