3 research outputs found

    Rationale for vacuum-pulse pump devices applied on cattle farms

    No full text
    One of the main elements to foster technological processes in animal husbandry are vacuumpulse pump devices designed to support dosing, mixing, transporting, lines for forage preparation and feeding, milking cows, milk processing, as well as a large number of technological processes in agriculture. The paper discusses a vacuum-pulse pumping device widely used in all industries and agriculture, a feature of which is to improve technical characteristics of the pump avoiding direct mechanical energy consumption and boasting a fairly simple design. In vacuum-pulse pumping devices, transient events are caused deliberately to increase ejection coefficient, productivity, etc. Oscillating flows of materials being transported are very diverse, due to an increased number of similarity criteria that determine flow patterns. Whereas superficial velocity and the Reynolds number are commonly used for a steady flow, for an oscillating flow, the relative frequency and the relative amplitude of oscillations are added. The objects of experimental research were ejectors with oscillating flows. The wider objective of the experiments was to determine the most effective performance indicators of the ejectors, including the degree of pressure increase, the ejection coefficient and the geometric parameter. Resulting from the experiments, a direct relationship was established between changes in the performance of a pulse-vacuum pumping device and valve material and magnitude of its oscillations. A pulse ejector is recommended to have metal-seated ball valves with a pulsation frequency of 90–100 min−1. Once applied, the proposed pulse ejector will eventually increase the transportation productivity by 14.5 %

    Optimization of plow adjustment

    No full text
    Optimization of plow adjustment is very important for national economy, especially in solving problems of increasing agricultural production and reducing energy consumption during plowing. One of the ways to optimize the plow adjustment is to reduce the friction forces of the plow from pressure on the bottom of the furrow and the walls of the furrow. To optimize the configuration of the plow, various methods and techniques are proposed and used that have certain advantages and disadvantages. One of the promising directions of reducing the friction forces of the plow is a dynamic method that uses adjustments of specific devices of the plow and tractor linkage mechanisms. However, one of the significant drawbacks of these adjustments is the shift of the tractor traction point from the longitudinal axis of symmetry of the tractor. The accepted working hypothesis and the studies of the process dynamics made it possible to determine the optimal parameters of the calculated and structural displacement of the tractor thrust point from the resistance line of the plow, as well as to develop recommendations for manufacturers of plows and agricultural tractors

    Investigation of the effect of air supply on the effective engine performance of a machine-tractor unit under unsteady load

    No full text
    The article discusses the effect of air supply (excess air coefficient) on the effective performance of the engine of a machine-tractor unit with an unsteady load. The analysis of the influence of unsteady load on the engine performance of the machine-tractor unit (MTU) is given. Theoretical studies are presented to determine the effective performance of the MTU engine under unsteady load and their comparative analysis with the results of experimental data. This is necessary to verify the adequacy of theoretical dependencies with the results of experimental studies
    corecore