13 research outputs found

    The Influence of the CES1 Genotype on the Pharmacokinetics of Enalapril in Patients with Arterial Hypertension

    No full text
    The angiotensin-converting enzyme inhibitor enalapril is hydrolysed to an active metabolite, enalaprilat, in the liver via carboxylesterase 1 (CES1). Previous studies show that variant rs71647871 in the CES1 gene affects the pharmacokinetics of enalapril on liver samples as well as healthy volunteers. This study included 286 Caucasian patients with arterial hypertension who received enalapril. The concentrations of enalapril and enalaprilat were determined before subsequent intake of the drug and 4 h after it with high-performance liquid chromatography (HPLC) and mass spectrometric detection. The study included genetic markers as follows: rs2244613, rs71647871 (c.428G>A, p.G143E) and three SNPs indicating the presence of a subtype CES1A1c (rs12149368, rs111604615 and rs201577108). Mean peak and trough enalaprilat concentrations, adjusted by clinical variables, were significantly lower in CES1 rs2244613 heterozygotes (by 16.6% and 19.6%) and in CC homozygotes (by 32.7% and 41.4%) vs. the AA genotype. In CES1A1c homozygotes, adjusted mean enalaprilat concentrations were 75% lower vs. heterozygotes and wild-type (WT) homozygotes. Pharmacogenetic markers of the CES1 gene may be a promising predictor for individualisation when prescribing enalapril

    The Influence of Structural Variants of the CES1 Gene on the Pharmacokinetics of Enalapril, Presumably Due to Linkage Disequilibrium with the Intronic rs2244613

    No full text
    Variants in the CES1 gene encoding carboxylesterase 1 may affect the metabolism of enalapril to the active metabolite enalaprilat. It was shown that the A allele of rs71647871 and the C allele of rs2244613 led to a decrease in plasma enalaprilat concentrations. This study aimed to estimate the effect of structural haplotypes of CES1 containing the pseudogene CES1P1, or a hybrid of the gene and the pseudogene CES1A2, on the pharmacokinetics of enalapril. We included 286 Caucasian patients with arterial hypertension treated with enalapril. Genotyping was performed using real-time PCR and long-range PCR. Peak and trough plasma enalaprilat concentrations were lower in carriers of CES1A2. The studied haplotypes were in linkage disequilibrium with rs2244613: generally, the A allele was in the haplotype containing the CES1P1, and the C allele was in the haplotype with the CES1A2. Thus, carriers of CES1A2 have reduced CES1 activity against enalapril. Linkage disequilibrium of the haplotype containing the CES1P1 or CES1A2 with rs2244613 should be taken into account when genotyping the CES1 gene

    Features of Electrochemical Hydrogen Pump Based on Irradiated Proton Exchange Membrane

    No full text
    An electrochemical hydrogen pump (EHP) with a proton exchange membrane (PEM) used as part of fusion cycle systems successfully combines the processes of hydrogen extraction, purification and compression in a single device. This work comprises a novel study of the effect of ionizing radiation on the properties of the PEM as part of the EHP. Radiation exposure leads to nonspecific degradation of membranes, changes in their structure, and destruction of side and matrix chains. The findings from this work reveal that the replacement of sulfate groups in the membrane structure with carboxyl and hydrophilic groups leads to a decrease in conductivity from 0.115 to 0.103 S cm−1, which is reflected in halving the device performance at a temperature of 30 °C. The shift of the ionomer peak of small-angle X-ray scattering curves from 3.1 to 4.4 nm and the absence of changes in the water uptake suggested structural changes in the PEM after the irradiation. Increasing the EHP operating temperature minimized the effect of membrane irradiation on the pump performance, but enhanced membrane drying at low pressure and 50 °C, which caused a current density drop from 0.52 to 0.32 A·cm−2 at 0.5 V
    corecore