3 research outputs found

    Catalytic Etherification of ortho-Phosphoric Acid for the Synthesis of Polyurethane Ionomer Films

    No full text
    The etherification reaction of ortho-phosphoric acid (OPA) with polyoxypropylene glycol in the presence of tertiary amines was studied. The reaction conditions promoting the catalytic activity of triethanolamine (TEOA) and triethylamine (TEA) in the low-temperature etherification of OPA were established. The catalytic activity of TEOA and TEA in the etherification reaction of phosphoric acid is explained by the hydrophobic-hydrophilic interactions of TEA with PPG, leading, as a result of collective interactions, to a specific orientation of polyoxypropylene chains around the tertiary amine. When using triethylamine, complete etherification of OPA occurs, accompanied by the formation of branched OPA ethers terminated by hydroxyl groups and even the formation of polyphosphate structures. When triethanolamine is used as a catalyst, incomplete etherification of OPA with polyoxypropylene glycol occurs and as a result, part of the phosphate anions remain unreacted in the composition of the resulting aminoethers of ortho-phosphoric acid (AEPA). In this case, the hydroxyl groups of triethanolamine are completely involved in the OPA etherification reaction, but the catalytic activity of the tertiary amine weakens due to a decrease in its availability in the branched structure of AEPA. The kinetics of the etherification reaction of OPA by polyoxypropylene glycol catalyzed by TEOA and TEA were studied. It was shown that triethanolamine occupies a central position in the AEPA structure. The physico-mechanical and thermomechanical properties of polyurethane ionomer films obtained on the basis of AEPA synthesized in a wide temperature range were studied

    Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate

    No full text
    Nowadays, block copolymers hold great promise for the design of novel membranes to be applied for the membrane gas separation. In this regard, microporous block copolymers based on a macroinitiator with an anionic nature, such as potassium-substituted block copolymers of propylene oxide and ethylene oxide (PPEG) and 2,4-toluene diisocyanate (TDI), were obtained and investigated as effective gas separation membranes. The key element of the macromolecular structure that determines the supramolecular organization of the studied polymers is the coplanar blocks of polyisocyanates with an acetal nature (O-polyisocyanate). In the present research, the influence of the content of peripheral polyoxyethylene (POE) blocks in PPEG on the supramolecular structure processes and gas transport characteristics of the obtained polymers based on PPEG and TDI was investigated. According to the study of polymers if the POE block content is 15 wt %, the polyoxypropylene segments are located in the internal cavity of voids formed by O-polyisocyanate blocks. When the POE block content is 30 wt %, the flexible chain component forms its own microphase outside the segregation zone of the rigid O-polyisocyanate blocks. The permeability for polar molecules, such as ammonia or hydrogen sulfide, significantly exceeds the permeability values obtained for non-polar molecules He, N2 and CH4. A relatively high permeability is also observed for carbon dioxide. At the same time, the content of POE blocks has a small effect on the permeability for all studied gases. The diffusion coefficient increases with an increase in the POE block content in PPEG for all studied gases

    Pervaporation Polyurethane Membranes Based on Hyperbranched Organoboron Polyols

    No full text
    On the basis of aminoethers of boric acid (AEBA), polyurethane vapor-permeable and pervaporative membranes were obtained. AEBAs, the structure of which is modified by bulk adducts (EM) of diphenylol propane diglycidyl ether and ethanolamine, were studied. It turned out that AEBA exists in the form of clusters, and the use of EM as a result of partial destruction of associative interactions leads to a significant decrease in the size of AEBA-EM particles and their viscosity compared to unmodified AEBA. The introduction of EM into the composition of AEBA leads to a threefold increase in the vapor permeability of polyurethanes obtained on their basis. The observed effect is explained by the fact that a decrease in the size of clusters leads to loosening of their dense packing. Areas of clustering due to associative interactions of hydroxyl groups, together with the hydrophilic nature of polyoxyethylene glycol, create channels through which water molecules can penetrate. The increase in vapor permeability is accompanied by a multiple increase in the permeability coefficients in the pervaporative dehydration of isopropanol
    corecore