338 research outputs found

    Transient Zitterbewegung of charge carriers in graphene and carbon nanotubes

    Full text link
    Observable effects due to trembling motion (Zitterbewegung, ZB) of charge carriers in bilayer graphene, monolayer graphene and carbon nanotubes are calculated. It is shown that, when the charge carriers are prepared in the form of gaussian wave packets, the ZB has a transient character with the decay time of femtoseconds in graphene and picoseconds in nanotubes. Analytical results for bilayer graphene allow us to investigate phenomena which accompany the trembling motion. In particular, it is shown that the transient character of ZB in graphene is due to the fact that wave subpackets related to positive and negative electron energies move in opposite directions, so their overlap diminishes with time. This behavior is analogous to that of the wave packets representing relativistic electrons in a vacuum.Comment: 7 pages, 3 figures, augmented versio

    Zitterbewegung (trembling motion) of electrons in narrow gap semiconductors

    Full text link
    Theory of trembling motion [Zitterbewegung (ZB)] of charge carriers in various narrow-gap materials is reviewed. Nearly free electrons in a periodic potential, InSb-type semiconductors, bilayer graphene, monolayer graphene and carbon nanotubes are considered. General features of ZB are emphasized. It is shown that, when the charge carriers are prepared in the form of Gaussian wave packets, the ZB has a transient character with the decay time of femtoseconds in graphene and picoseconds in nanotubes. Zitterbewegung of electrons in graphene in the presence of an external magnetic field is mentioned. A similarity of ZB in semiconductors to that of relativistic electrons in a vacuum is stressed. Possible ways of observing the trembling motion in solids are mentioned.Comment: 8 pages, 5 figure

    Zitterbewegung of nearly-free and tightly bound electrons in solids

    Full text link
    We show theoretically that nonrelativistic nearly-free electrons in solids should experience a trembling motion (Zitterbewegung, ZB) in absence of external fields, similarly to relativistic electrons in vacuum. The Zitterbewegung is directly related to the influence of periodic potential on the free electron motion. The frequency of ZB is ωEg/\omega\approx E_g/\hbar, where EgE_g is the energy gap. The amplitude of ZB is determined by the strength of periodic potential and the lattice period and it can be of the order of nanometers. We show that the amplitude of ZB does not depend much on the width of the wave packet representing an electron in real space. An analogue of the Foldy-Wouthuysen transformation, known from relativistic quantum mechanics, is introduced in order to decouple electron states in various bands. We demonstrate that, after the bands are decoupled, electrons should be treated as particles of a finite size. In contrast to nearly-free electrons we consider a two-band model of tightly bound electrons. We show that also in this case the electrons should experience the trembling motion. It is concluded that the phenomenon of Zitterbewegung of electrons in crystalline solids is a rule rather than an exception.Comment: 22 pages, 6 figures Published version, minor changes mad

    On the supercritically diffusive magneto-geostrophic equations

    Full text link
    We address the well-posedness theory for the magento-geostrophic equation, namely an active scalar equation in which the divergence-free drift velocity is one derivative more singular than the active scalar. In the presence of supercritical fractional diffusion given by (-\Delta)^\gamma, where 0<\gamma<1, we discover that for \gamma>1/2 the equations are locally well-posed, while for \gamma<1/2 they are ill-posed, in the sense that there is no Lipschitz solution map. The main reason for the striking loss of regularity when \gamma goes below 1/2 is that the constitutive law used to obtain the velocity from the active scalar is given by an unbounded Fourier multiplier which is both even and anisotropic. Lastly, we note that the anisotropy of the constitutive law for the velocity may be explored in order to obtain an improvement in the regularity of the solutions when the initial data and the force have thin Fourier support, i.e. they are supported on a plane in frequency space. In particular, for such well-prepared data one may prove the local existence and uniqueness of solutions for all values of \gamma \in (0,1).Comment: 24 page

    Non-locality of Foldy-Wouthuysen and related transformations for the Dirac equation

    Full text link
    Non-localities of Foldy-Wouthuysen and related transformations, which are used to separate positive and negative energy states in the Dirac equation, are investigated. Second moments of functional kernels generated by the transformations are calculated, the transformed functions and their variances are computed. It is shown that all the transformed quantities are smeared in the coordinate space by the amount comparable to the Compton wavelength λc=/mc\lambda_c=\hbar/mc.Comment: 7 pages, two figure

    Zitterbewegung of Klein-Gordon particles and its simulation by classical systems

    Full text link
    The Klein-Gordon equation is used to calculate the Zitterbewegung (ZB, trembling motion) of spin-zero particles in absence of fields and in the presence of an external magnetic field. Both Hamiltonian and wave formalisms are employed to describe ZB and their results are compared. It is demonstrated that, if one uses wave packets to represent particles, the ZB motion has a decaying behavior. It is also shown that the trembling motion is caused by an interference of two sub-packets composed of positive and negative energy states which propagate with different velocities. In the presence of a magnetic field the quantization of energy spectrum results in many interband frequencies contributing to ZB oscillations and the motion follows a collapse-revival pattern. In the limit of non-relativistic velocities the interband ZB components vanish and the motion is reduced to cyclotron oscillations. The exact dynamics of a charged Klein-Gordon particle in the presence of a magnetic field is described on an operator level. The trembling motion of a KG particle in absence of fields is simulated using a classical model proposed by Morse and Feshbach -- it is shown that a variance of a Gaussian wave packet exhibits ZB oscillations.Comment: 16 pages and 7 figure

    Cyclotron motion in graphene

    Full text link
    We investigate cyclotron motion in graphene monolayers considering both the full quantum dynamics and its semiclassical limit reached at high carrier energies. Effects of zitterbewegung due to the two dispersion branches of the spectrum dominate the irregular quantum motion at low energies and are obtained as a systematic correction to the semiclassical case. Recent experiments are shown to operate in the semiclassical regime.Comment: 6 pages, 1 figure include

    The Sloan Lens ACS Survey. IX. Colors, Lensing and Stellar Masses of Early-type Galaxies

    Full text link
    We present the current photometric dataset for the Sloan Lens ACS (SLACS) Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade `A' (certain) lens systems, bringing the number of SLACS grade `A' lenses to 85; including 13 grade `B' (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade `A' systems have elliptical morphologies while ~10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for every system, making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10^10.5 to 10^11.8 M_\odot and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early-type galaxies with M* >~ 10^11 M_\odot, and are therefore an ideal dataset to investigate the kpc-scale distribution of luminous and dark matter in galaxies out to z ~ 0.5.Comment: 20 pages, 18 figures, 5 tables, published in Ap

    Redshifts of CLASS Radio Sources

    Full text link
    Spectroscopic observations of a sample of 42 flat-spectrum radio sources from the Cosmic Lens All-Sky Survey (CLASS) have yielded a mean redshift of =1.27 = 1.27 with an RMS spread of 0.95, at a completeness level of 64%. The sample consists of sources with a 5-GHz flux density of 25-50 mJy, making it the faintest flat-spectrum radio sample for which the redshift distribution has been studied. The spectra, obtained with the Willam Herschel Telescope (WHT), consist mainly of broad-line quasars at z>1z>1 and narrow-line galaxies at z<0.5z<0.5. Though the mean redshift of flat-spectrum radio sources exhibits little variation over more than two orders of magnitude in radio flux density, there is evidence for a decreasing fraction of quasars at weaker flux levels. In this paper we present the results of our spectroscopic observations, and discuss the implications for constraining cosmological parameters with statistical analyses of the CLASS survey.Comment: 10 pages, AJ accepte

    High resolution observations and mass modelling of the CLASS gravitational lens B1152+199

    Get PDF
    We present a series of high resolution radio and optical observations of the CLASS gravitational lens system B1152+199 obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN), Very Long Baseline Array (VLBA) and Hubble Space Telescope (HST). Based on the milliarcsecond-scale substructure of the lensed radio components and precise optical astrometry for the lensing galaxy, we construct models for the system and place constraints on the galaxy mass profile. For a single galaxy model with surface mass density Sigma(r) propto r^-beta, we find that 0.95 < beta < 1.21 at 2-sigma confidence. Including a second deflector to represent a possible satellite galaxy of the primary lens leads to slightly steeper mass profiles.Comment: 7 pages, post-referee revision for MNRA
    corecore