338 research outputs found
Transient Zitterbewegung of charge carriers in graphene and carbon nanotubes
Observable effects due to trembling motion (Zitterbewegung, ZB) of charge
carriers in bilayer graphene, monolayer graphene and carbon nanotubes are
calculated. It is shown that, when the charge carriers are prepared in the form
of gaussian wave packets, the ZB has a transient character with the decay time
of femtoseconds in graphene and picoseconds in nanotubes. Analytical results
for bilayer graphene allow us to investigate phenomena which accompany the
trembling motion. In particular, it is shown that the transient character of ZB
in graphene is due to the fact that wave subpackets related to positive and
negative electron energies move in opposite directions, so their overlap
diminishes with time. This behavior is analogous to that of the wave packets
representing relativistic electrons in a vacuum.Comment: 7 pages, 3 figures, augmented versio
Zitterbewegung (trembling motion) of electrons in narrow gap semiconductors
Theory of trembling motion [Zitterbewegung (ZB)] of charge carriers in
various narrow-gap materials is reviewed. Nearly free electrons in a periodic
potential, InSb-type semiconductors, bilayer graphene, monolayer graphene and
carbon nanotubes are considered. General features of ZB are emphasized. It is
shown that, when the charge carriers are prepared in the form of Gaussian wave
packets, the ZB has a transient character with the decay time of femtoseconds
in graphene and picoseconds in nanotubes. Zitterbewegung of electrons in
graphene in the presence of an external magnetic field is mentioned. A
similarity of ZB in semiconductors to that of relativistic electrons in a
vacuum is stressed. Possible ways of observing the trembling motion in solids
are mentioned.Comment: 8 pages, 5 figure
Zitterbewegung of nearly-free and tightly bound electrons in solids
We show theoretically that nonrelativistic nearly-free electrons in solids
should experience a trembling motion
(Zitterbewegung, ZB) in absence of external fields, similarly to relativistic
electrons in vacuum.
The Zitterbewegung is directly related to the influence of periodic potential
on the free electron motion.
The frequency of ZB is , where is the energy
gap. The amplitude of ZB is determined by the strength of periodic potential
and the lattice period and it can be of the order of nanometers. We show that
the amplitude of ZB does not depend much on the width of the wave packet
representing an electron in real space.
An analogue of the Foldy-Wouthuysen transformation, known from relativistic
quantum mechanics, is introduced in order to decouple electron states in
various bands. We demonstrate that, after the bands are decoupled, electrons
should be treated as particles of a finite size.
In contrast to nearly-free electrons we consider a two-band model of tightly
bound electrons.
We show that also in this case the electrons should experience the trembling
motion. It is concluded that the phenomenon of Zitterbewegung of electrons in
crystalline solids is a rule rather than an exception.Comment: 22 pages, 6 figures Published version, minor changes mad
On the supercritically diffusive magneto-geostrophic equations
We address the well-posedness theory for the magento-geostrophic equation,
namely an active scalar equation in which the divergence-free drift velocity is
one derivative more singular than the active scalar. In the presence of
supercritical fractional diffusion given by (-\Delta)^\gamma, where 0<\gamma<1,
we discover that for \gamma>1/2 the equations are locally well-posed, while for
\gamma<1/2 they are ill-posed, in the sense that there is no Lipschitz solution
map. The main reason for the striking loss of regularity when \gamma goes below
1/2 is that the constitutive law used to obtain the velocity from the active
scalar is given by an unbounded Fourier multiplier which is both even and
anisotropic. Lastly, we note that the anisotropy of the constitutive law for
the velocity may be explored in order to obtain an improvement in the
regularity of the solutions when the initial data and the force have thin
Fourier support, i.e. they are supported on a plane in frequency space. In
particular, for such well-prepared data one may prove the local existence and
uniqueness of solutions for all values of \gamma \in (0,1).Comment: 24 page
Non-locality of Foldy-Wouthuysen and related transformations for the Dirac equation
Non-localities of Foldy-Wouthuysen and related transformations, which are
used to separate positive and negative energy states in the Dirac equation, are
investigated. Second moments of functional kernels generated by the
transformations are calculated, the transformed functions and their variances
are computed. It is shown that all the transformed quantities are smeared in
the coordinate space by the amount comparable to the Compton wavelength
.Comment: 7 pages, two figure
Zitterbewegung of Klein-Gordon particles and its simulation by classical systems
The Klein-Gordon equation is used to calculate the Zitterbewegung (ZB,
trembling motion) of spin-zero particles in absence of fields and in the
presence of an external magnetic field. Both Hamiltonian and wave formalisms
are employed to describe ZB and their results are compared. It is demonstrated
that, if one uses wave packets to represent particles, the ZB motion has a
decaying behavior. It is also shown that the trembling motion is caused by an
interference of two sub-packets composed of positive and negative energy states
which propagate with different velocities. In the presence of a magnetic field
the quantization of energy spectrum results in many interband frequencies
contributing to ZB oscillations and the motion follows a collapse-revival
pattern. In the limit of non-relativistic velocities the interband ZB
components vanish and the motion is reduced to cyclotron oscillations. The
exact dynamics of a charged Klein-Gordon particle in the presence of a magnetic
field is described on an operator level. The trembling motion of a KG particle
in absence of fields is simulated using a classical model proposed by Morse and
Feshbach -- it is shown that a variance of a Gaussian wave packet exhibits ZB
oscillations.Comment: 16 pages and 7 figure
Cyclotron motion in graphene
We investigate cyclotron motion in graphene monolayers considering both the
full quantum dynamics and its semiclassical limit reached at high carrier
energies. Effects of zitterbewegung due to the two dispersion branches of the
spectrum dominate the irregular quantum motion at low energies and are obtained
as a systematic correction to the semiclassical case. Recent experiments are
shown to operate in the semiclassical regime.Comment: 6 pages, 1 figure include
The Sloan Lens ACS Survey. IX. Colors, Lensing and Stellar Masses of Early-type Galaxies
We present the current photometric dataset for the Sloan Lens ACS (SLACS)
Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have
enabled the confirmation of an additional 15 grade `A' (certain) lens systems,
bringing the number of SLACS grade `A' lenses to 85; including 13 grade `B'
(likely) systems, SLACS has identified nearly 100 lenses and lens candidates.
Approximately 80% of the grade `A' systems have elliptical morphologies while
~10% show spiral structure; the remaining lenses have lenticular morphologies.
Spectroscopic redshifts for the lens and source are available for every system,
making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We
have developed a novel Bayesian stellar population analysis code to determine
robust stellar masses with accurate error estimates. We apply this code to
deep, high-resolution HST imaging and determine stellar masses with typical
statistical errors of 0.1 dex; we find that these stellar masses are unbiased
compared to estimates obtained using SDSS photometry, provided that informative
priors are used. The stellar masses range from 10^10.5 to 10^11.8 M and
the typical stellar mass fraction within the Einstein radius is 0.4, assuming a
Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar
masses and projected ellipticities, appear to be indistinguishable from other
SDSS galaxies with similar stellar velocity dispersions. This further supports
that SLACS lenses are representative of the overall population of massive
early-type galaxies with M* >~ 10^11 M, and are therefore an ideal
dataset to investigate the kpc-scale distribution of luminous and dark matter
in galaxies out to z ~ 0.5.Comment: 20 pages, 18 figures, 5 tables, published in Ap
Redshifts of CLASS Radio Sources
Spectroscopic observations of a sample of 42 flat-spectrum radio sources from
the Cosmic Lens All-Sky Survey (CLASS) have yielded a mean redshift of with an RMS spread of 0.95, at a completeness level of 64%. The sample
consists of sources with a 5-GHz flux density of 25-50 mJy, making it the
faintest flat-spectrum radio sample for which the redshift distribution has
been studied. The spectra, obtained with the Willam Herschel Telescope (WHT),
consist mainly of broad-line quasars at and narrow-line galaxies at
. Though the mean redshift of flat-spectrum radio sources exhibits
little variation over more than two orders of magnitude in radio flux density,
there is evidence for a decreasing fraction of quasars at weaker flux levels.
In this paper we present the results of our spectroscopic observations, and
discuss the implications for constraining cosmological parameters with
statistical analyses of the CLASS survey.Comment: 10 pages, AJ accepte
High resolution observations and mass modelling of the CLASS gravitational lens B1152+199
We present a series of high resolution radio and optical observations of the
CLASS gravitational lens system B1152+199 obtained with the Multi-Element
Radio-Linked Interferometer Network (MERLIN), Very Long Baseline Array (VLBA)
and Hubble Space Telescope (HST). Based on the milliarcsecond-scale
substructure of the lensed radio components and precise optical astrometry for
the lensing galaxy, we construct models for the system and place constraints on
the galaxy mass profile. For a single galaxy model with surface mass density
Sigma(r) propto r^-beta, we find that 0.95 < beta < 1.21 at 2-sigma confidence.
Including a second deflector to represent a possible satellite galaxy of the
primary lens leads to slightly steeper mass profiles.Comment: 7 pages, post-referee revision for MNRA
- …