21 research outputs found

    Level number variance and spectral compressibility in a critical two-dimensional random matrix model

    Full text link
    We study level number variance in a two-dimensional random matrix model characterized by a power-law decay of the matrix elements. The amplitude of the decay is controlled by the parameter b. We find analytically that at small values of b the level number variance behaves linearly, with the compressibility chi between 0 and 1, which is typical for critical systems. For large values of b, we derive that chi=0, as one would normally expect in the metallic phase. Using numerical simulations we determine the critical value of b at which the transition between these two phases occurs.Comment: 6 page

    Global properties of Stochastic Loewner evolution driven by Levy processes

    Full text link
    Standard Schramm-Loewner evolution (SLE) is driven by a continuous Brownian motion which then produces a trace, a continuous fractal curve connecting the singular points of the motion. If jumps are added to the driving function, the trace branches. In a recent publication [1] we introduced a generalized SLE driven by a superposition of a Brownian motion and a fractal set of jumps (technically a stable L\'evy process). We then discussed the small-scale properties of the resulting L\'evy-SLE growth process. Here we discuss the same model, but focus on the global scaling behavior which ensues as time goes to infinity. This limiting behavior is independent of the Brownian forcing and depends upon only a single parameter, α\alpha, which defines the shape of the stable L\'evy distribution. We learn about this behavior by studying a Fokker-Planck equation which gives the probability distribution for endpoints of the trace as a function of time. As in the short-time case previously studied, we observe that the properties of this growth process change qualitatively and singularly at α=1\alpha =1. We show both analytically and numerically that the growth continues indefinitely in the vertical direction for α>1\alpha > 1, goes as log⁥t\log t for α=1\alpha = 1, and saturates for α<1\alpha< 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. In the former case, the characteristic scale is X(t)∌t1/αX(t) \sim t^{1/\alpha}. In the latter case the scale is Y(t)∌A+Bt1−1/αY(t) \sim A + B t^{1-1/\alpha} for α≠1\alpha \neq 1, and Y(t)∌ln⁥tY(t) \sim \ln t for α=1\alpha = 1. Scaling functions for the probability density are given for various limiting cases.Comment: Published versio

    On harmonic measure of critical curves

    Full text link
    Fractal geometry of critical curves appearing in 2D critical systems is characterized by their harmonic measure. For systems described by conformal field theories with central charge c⩜1c\leqslant 1, scaling exponents of harmonic measure have been computed by B. Duplantier [Phys. Rev. Lett. {\bf 84}, 1363 (2000)] by relating the problem to boundary two-dimensional gravity. We present a simple argument that allows us to connect harmonic measure of critical curves to operators obtained by fusion of primary fields, and compute characteristics of fractal geometry by means of regular methods of conformal field theory. The method is not limited to theories with c⩜1c\leqslant 1.Comment: Some more correction

    Stochastic Loewner evolution driven by Levy processes

    Full text link
    Standard stochastic Loewner evolution (SLE) is driven by a continuous Brownian motion, which then produces a continuous fractal trace. If jumps are added to the driving function, the trace branches. We consider a generalized SLE driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual SLE parameter, Îș\kappa, as well as α\alpha which defines the shape of the stable Levy distribution. The resulting behavior is characterized by two descriptors: pp, the probability that the trace self-intersects, and p~\tilde{p}, the probability that it will approach arbitrarily close to doing so. Using Dynkin's formula, these descriptors are shown to change qualitatively and singularly at critical values of Îș\kappa and α\alpha. It is reasonable to call such changes ``phase transitions''. These transitions occur as Îș\kappa passes through four (a well-known result) and as α\alpha passes through one (a new result). Numerical simulations are then used to explore the associated touching and near-touching events.Comment: Published version, minor typos corrected, added reference

    Critical curves in conformally invariant statistical systems

    Full text link
    We consider critical curves -- conformally invariant curves that appear at critical points of two-dimensional statistical mechanical systems. We show how to describe these curves in terms of the Coulomb gas formalism of conformal field theory (CFT). We also provide links between this description and the stochastic (Schramm-) Loewner evolution (SLE). The connection appears in the long-time limit of stochastic evolution of various SLE observables related to CFT primary fields. We show how the multifractal spectrum of harmonic measure and other fractal characteristics of critical curves can be obtained.Comment: Published versio
    corecore