21 research outputs found
Level number variance and spectral compressibility in a critical two-dimensional random matrix model
We study level number variance in a two-dimensional random matrix model
characterized by a power-law decay of the matrix elements. The amplitude of the
decay is controlled by the parameter b. We find analytically that at small
values of b the level number variance behaves linearly, with the
compressibility chi between 0 and 1, which is typical for critical systems. For
large values of b, we derive that chi=0, as one would normally expect in the
metallic phase. Using numerical simulations we determine the critical value of
b at which the transition between these two phases occurs.Comment: 6 page
Global properties of Stochastic Loewner evolution driven by Levy processes
Standard Schramm-Loewner evolution (SLE) is driven by a continuous Brownian
motion which then produces a trace, a continuous fractal curve connecting the
singular points of the motion. If jumps are added to the driving function, the
trace branches. In a recent publication [1] we introduced a generalized SLE
driven by a superposition of a Brownian motion and a fractal set of jumps
(technically a stable L\'evy process). We then discussed the small-scale
properties of the resulting L\'evy-SLE growth process. Here we discuss the same
model, but focus on the global scaling behavior which ensues as time goes to
infinity. This limiting behavior is independent of the Brownian forcing and
depends upon only a single parameter, , which defines the shape of the
stable L\'evy distribution. We learn about this behavior by studying a
Fokker-Planck equation which gives the probability distribution for endpoints
of the trace as a function of time. As in the short-time case previously
studied, we observe that the properties of this growth process change
qualitatively and singularly at . We show both analytically and
numerically that the growth continues indefinitely in the vertical direction
for , goes as for , and saturates for . The probability density has two different scales corresponding to
directions along and perpendicular to the boundary. In the former case, the
characteristic scale is . In the latter case the scale
is for , and
for . Scaling functions for the probability density are given for
various limiting cases.Comment: Published versio
On harmonic measure of critical curves
Fractal geometry of critical curves appearing in 2D critical systems is
characterized by their harmonic measure. For systems described by conformal
field theories with central charge , scaling exponents of
harmonic measure have been computed by B. Duplantier [Phys. Rev. Lett. {\bf
84}, 1363 (2000)] by relating the problem to boundary two-dimensional gravity.
We present a simple argument that allows us to connect harmonic measure of
critical curves to operators obtained by fusion of primary fields, and compute
characteristics of fractal geometry by means of regular methods of conformal
field theory. The method is not limited to theories with .Comment: Some more correction
Stochastic Loewner evolution driven by Levy processes
Standard stochastic Loewner evolution (SLE) is driven by a continuous
Brownian motion, which then produces a continuous fractal trace. If jumps are
added to the driving function, the trace branches. We consider a generalized
SLE driven by a superposition of a Brownian motion and a stable Levy process.
The situation is defined by the usual SLE parameter, , as well as
which defines the shape of the stable Levy distribution. The resulting
behavior is characterized by two descriptors: , the probability that the
trace self-intersects, and , the probability that it will approach
arbitrarily close to doing so. Using Dynkin's formula, these descriptors are
shown to change qualitatively and singularly at critical values of and
. It is reasonable to call such changes ``phase transitions''. These
transitions occur as passes through four (a well-known result) and as
passes through one (a new result). Numerical simulations are then used
to explore the associated touching and near-touching events.Comment: Published version, minor typos corrected, added reference
Critical curves in conformally invariant statistical systems
We consider critical curves -- conformally invariant curves that appear at
critical points of two-dimensional statistical mechanical systems. We show how
to describe these curves in terms of the Coulomb gas formalism of conformal
field theory (CFT). We also provide links between this description and the
stochastic (Schramm-) Loewner evolution (SLE). The connection appears in the
long-time limit of stochastic evolution of various SLE observables related to
CFT primary fields. We show how the multifractal spectrum of harmonic measure
and other fractal characteristics of critical curves can be obtained.Comment: Published versio