6 research outputs found

    Diabetes in childhood cancer survivors: emerging concepts in pathophysiology and future directions

    Get PDF
    With advancements in cancer treatment and supportive care, there is a growing population of childhood cancer survivors who experience a substantial burden of comorbidities related to having received cancer treatment at a young age. Despite an overall reduction in the incidence of most chronic health conditions in childhood cancer survivors over the past several decades, the cumulative incidence of certain late effects, in particular diabetes mellitus (DM), has increased. The implications are significant, because DM is a key risk factor for cardiovascular disease, a leading cause of premature death in childhood cancer survivors. The underlying pathophysiology of DM in cancer survivors is multifactorial. DM develops at younger ages in survivors compared to controls, which may reflect an “accelerated aging” phenotype in these individuals. The treatment-related exposures (i.e., chemotherapy, radiation) that increase risk for DM in childhood cancer survivors may be more than additive with established DM risk factors (e.g., older age, obesity, race, and ethnicity). Emerging research also points to parallels in cellular processes implicated in aging- and cancer treatment-related DM. Still, there remains marked inter-individual variability regarding risk of DM that is not explained by demographic and therapeutic risk factors alone. Recent studies have highlighted the role of germline genetic risk factors and epigenetic modifications that are associated with risk of DM in both the general and oncology populations. This review summarizes our current understanding of recognized risk factors for DM in childhood cancer survivors to help inform targeted approaches for disease screening, prevention, and treatment. Furthermore, it highlights the existing scientific gaps in understanding the relative contributions of individual therapeutic exposures and the mechanisms by which they exert their effects that uniquely predispose this population to DM following cancer treatment

    Awareness of cord blood collection and the impact on banking

    Full text link
    BackgroundUmbilical cord blood (UCB) is an important source of hematopoietic stem cells for transplantation especially in minority populations with limited chances of finding a histocompatible volunteer donor in the registry. UCB has the advantages of early availability, successful outcomes despite some histocompatibility mismatch, and low incidence of chronic graftâ versusâ host disease. Public cord blood banks that disseminate UCB products for transplant depend on voluntary donation at participating hospitals and obstetrical providers for collection.ProcedureUsing survey questionnaires, we evaluated attitudes toward UCB donation, the frequency of donation, and provider opinions on UCB collection in the greater St. Louis metropolitan area that caters to minority ethnicities in significant numbers.ResultsOur data suggest that nervousness and lack of information regarding the donation and utility of the product were ubiquitous reasons for not donating. Additionally, irrespective of age or level of education, women relied on healthcare providers for information regarding UCB donation. Providers reported primarily time constraints to discussing UCB donation at prenatal visits (54%). Of the interviewees, 62% donated UCB. Fallout due to refusal or preferring private banking was miniscule.ConclusionsThese results suggest that dedicated personnel focused on disseminating information, obtaining consent, and collecting the UCB product at major hospitals can enrich cord blood banks especially with minority cords. Sustained and focused efforts could improve upon a relatively high wastage rate and ensure a robust supply of UCB products at local public banks.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137506/1/pbc26412_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137506/2/pbc26412.pd

    Exercise training and NR supplementation to improve muscle mass and fitness in adolescent and young adult hematopoietic cell transplant survivors: a randomized controlled trial {1}

    No full text
    Abstract Background Advances in hematopoietic cell transplantation (HCT) have led to marked improvements in survival. However, adolescents and young adults (AYAs) who undergo HCT are at high risk of developing sarcopenia (loss of skeletal muscle mass) due to the impact of HCT-related exposures on the developing musculoskeletal system. HCT survivors who have sarcopenia also have excess lifetime risk of non-relapse mortality. Therefore, interventions that increase skeletal muscle mass, metabolism, strength, and function are needed to improve health in AYA HCT survivors. Skeletal muscle is highly reliant on mitochondrial energy production, as reflected by oxidative phosphorylation (OXPHOS) capacity. Exercise is one approach to target skeletal muscle mitochondrial OXPHOS, and in turn improve muscle function and strength. Another approach is to use “exercise enhancers”, such as nicotinamide riboside (NR), a safe and well-tolerated precursor of nicotinamide adenine dinucleotide (NAD+), a cofactor that in turn impacts muscle energy production. Interventions combining exercise with exercise enhancers like NR hold promise, but have not yet been rigorously tested in AYA HCT survivors. Methods/design We will perform a randomized controlled trial testing 16 weeks of in-home aerobic and resistance exercise and NR in AYA HCT survivors, with a primary outcome of muscle strength via dynamometry and a key secondary outcome of cardiovascular fitness via cardiopulmonary exercise testing. We will also test the effects of these interventions on i) muscle mass via dual energy x-ray absorptiometry; ii) muscle mitochondrial OXPHOS via an innovative non-invasive MRI-based technique, and iii) circulating correlates of NAD+ metabolism via metabolomics. Eighty AYAs (ages 15-30y) will be recruited 6–24 months post-HCT and randomized to 1 of 4 arms: exercise + NR, exercise alone, NR alone, or control. Outcomes will be collected at baseline and after the 16-week intervention. Discussion We expect that exercise with NR will produce larger changes than exercise alone in key outcomes, and that changes will be mediated by increases in muscle OXPHOS. We will apply the insights gained from this trial to develop individualized, evidence-supported precision initiatives that will reduce chronic disease burden in high-risk cancer survivors. Trial registration ClinicalTrials.gov, NCT05194397. Registered January 18, 2022, https://clinicaltrials.gov/ct2/show/NCT05194397 {2a}

    Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications

    No full text
    corecore