63 research outputs found
Measurements of thermodynamic and transport properties of EuC: a low-temperature analogue of EuO
EuC is a ferromagnet with a Curie-temperature of K. It
is semiconducting with the particularity that the resistivity drops by about 5
orders of magnitude on cooling through , which is therefore called a
metal-insulator transition. In this paper we study the magnetization, specific
heat, thermal expansion, and the resistivity around this ferromagnetic
transition on high-quality EuC samples. At we observe well defined
anomalies in the specific heat and thermal expansion data.
The magnetic contributions of and can satisfactorily be
described within a mean-field theory, taking into account the magnetization
data. In zero magnetic field the magnetic contributions of the specific heat
and thermal expansion fulfill a Gr\"uneisen-scaling, which is not preserved in
finite fields. From an estimation of the pressure dependence of via
Ehrenfest's relation, we expect a considerable increase of under applied
pressure due to a strong spin-lattice coupling. Furthermore the influence of
weak off stoichiometries in EuC was studied. It is
found that strongly affects the resistivity, but hardly changes the
transition temperature. In all these aspects, the behavior of EuC strongly
resembles that of EuO.Comment: 7 pages, 6 figure
Doppler cooling and trapping on forbidden transitions
Ultracold atoms at temperatures close to the recoil limit have been achieved
by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms
has been cooled and trapped to a temperature as low as 6 \mu K by operating a
magneto-optical trap on the spin-forbidden intercombination transition.
Quenching the long-lived excited state with an additional laser enhanced the
scattering rate by a factor of 15, while a high selectivity in velocity was
preserved. With this method more than 10% of pre-cooled atoms from a standard
magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo
simulations of the cooling process are in good agreement with the experiments
Hollow silica capsules for amphiphilic transport and sustained delivery of antibiotic and anticancer drugs
Hollow mesoporous silica capsules HMSC are potential drug transport vehicles due to their biocompatibility, high loading capacity and sufficient stability in biological milieu. Herein, we report the synthesis of ellipsoid shaped HMSC aspect ratio amp; 8764;2 performed using hematite particles as solid templates that were coated with a conformal silica shell through cross condensation reactions. For obtaining hollow silica capsules, the iron oxide core was removed by acidic leaching. Gas sorption studies on HMSC revealed mesoscopic pores main pore width amp; 8764;38 and a high surface area of 308.8 m2 g amp; 8722;1. Cell uptake of dye labeled HMSC was confirmed by incubating them with human cervical cancer HeLa cells and analyzing the internalization through confocal microscopy. The amphiphilic nature of HMSC for drug delivery applications was tested by loading antibiotic ciprofloxacin and anticancer curcumin compounds as model drugs for hydrophilic and hydrophobic therapeutics, respectively. The versatility of HMSC in transporting hydrophilic as well as hydrophobic drugs and a pH dependent drug release over several days under physiological conditions was demonstrated in both cases by UV vis spectroscopy. Ciprofloxacin loaded HMSC were additionally evaluated towards Gram negative E. coli bacteria and demonstrated their efficacy even at low concentrations 10 amp; 956;g ml amp; 8722;1 in inhibiting complete bacterial growth over 18 hour
- …