2 research outputs found

    Atelectasis in obese patients undergoing laparoscopic bariatric surgery are not increased upon discharge from Post Anesthesia Care Unit.

    Get PDF
    BACKGROUND Obese patients frequently develop pulmonary atelectasis upon general anesthesia. The risk is increased during laparoscopic surgery. This prospective, observational single-center study evaluated atelectasis dynamics using Electric Impedance Tomography (EIT) in patients undergoing laparoscopic bariatric surgery. METHODS We included adult patients with ASA physical status I-IV and a BMI of ≥40. Exclusion criteria were known severe pulmonary hypertension, home oxygen therapy, heart failure, and recent pulmonary infections. The primary outcome was the proportion of poorly ventilated lung regions (low tidal variation areas) and the global inhomogeneity (GI) index assessed by EIT before discharge from the Post Anesthesia Care Unit compared to these same measures prior to initiation of anesthesia. RESULTS The median (IQR) proportion of low tidal variation areas at the different analysis points were T1 10.8% [3.6-15.1%] and T5 10.3% [2.6-18.9%], and the mean difference was -0.7% (95% CI: -5.8% -4.5%), i.e., lower than the predefined non-inferiority margin of 5% (p = 0.022). There were no changes at the four additional time points compared to T1 or postoperative pulmonary complications during the 14 days following the procedure. CONCLUSION We found that obese patients undergoing laparoscopic bariatric surgery do not leave the Post Anesthesia Care Unit with increased low tidal variation areas compared to the preoperative period

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore