7 research outputs found

    Oral Adelmidrol Administration Up-Regulates Palmitoylethanolamide Production in Mice Colon and Duodenum through a PPAR-γ Independent Action

    Get PDF
    Adelmidrol is a promising palmitoylethanolamide (PEA) analog which displayed up-and-coming anti-inflammatory properties in several inflammatory conditions. Recent studies demonstrated that Adelmidrol is an in vitro enhancer of PEA endogenous production, through the so called “entourage” effect. The present study investigated the ability of Adelmidrol (1 and 10 mg/Kg per os) to increase the endogenous level of PEA in the duodenum and colon of mice after 21-day oral administration in the presence and absence of PPAR-γ inhibitor (1 mg/kg). The level of PEA was analyzed by HPLC-MS. The expression of PEA-related enzymatic machinery was evaluated by western blot and RT-PCR analysis. Our findings demonstrated that Adelmidrol significantly increased PEA levels in the duodenum and colon in a dose/time-dependent manner. We also revealed that Adelmidrol up regulated the enzymatic machinery responsible for PEA metabolism and catabolism. Interestingly, the use of the selective irreversible PPAR-γ antagonist did not affect either PEA intestinal levels or expres-sion/transcription of PEA metabolic enzymes following Adelmidrol administration. The “entourage effect” with Adelmidrol as an enhancer of PEA was thus PPAR-γ-independent. The findings suggest that Adelmidrol can maximize a PEA therapeutic-based approach in several intestinal morbidities

    Predictors of abdominal pain severity in patients with constipation-prevalent irritable bowel syndrome

    Get PDF
    Symptoms of irritable bowel syndrome (IBS) have been associated to altered colonic motility and sensation. Smoking affects pain perception and is a risk factor in the development of post-infectious IBS, but its effect on abdominal pain and colonic transit remains to be elucidated in IBS. Forty patients with IBS-C and 28 with IBS-M were selected based on Rome IV criteria. Colonic transit time was studied and smoking habit was recorded. Presence of mild or severe abdominal pain and the prevalent pain characteristics (diffuse or localized, chronic or acute, with cramps or gradually distending) were recorded. Data were analyzed by univariate and stepwise multiple logistic regression analysis to verify the risk association between pain and all other variables. IBS-C patients had a longer transit time in the right colon and scored more chronic pain than IBS-M patients. When severity of abdominal pain was used as discriminating factor, a significant number of subjects reporting severe pain were males and smokers (16/30 vs. 4/38 and 20/30 vs. 4/38, both ƿ <0.001). Multivariate analysis confirmed that smoking was an independent factor associated with severe abdominal pain (OR 14.3, CI 2-99, p=0.007). Smoking was not associated with colonic transit times and colonic transit was not associated with IBS symptoms' severity (both ƿ =N.S.) Smoking was the only factor independently associated with severe abdominal pain. As smoking does not seem to affect colonic transit time, we suggest that smoking may influence visceral perception and symptoms severity in IBS patients

    Next-Generation Probiotics for Inflammatory Bowel Disease

    Get PDF
    Engineered probiotics represent a cutting-edge therapy in intestinal inflammatory disease (IBD). Genetically modified bacteria have provided a new strategy to release therapeutically operative molecules in the intestine and have grown into promising new therapies for IBD. Current IBD treatments, such as corticosteroids and immunosuppressants, are associated with relevant side effects and a significant proportion of patients are dependent on these therapies, thus exposing them to the risk of relevant long-term side effects. Discovering new and effective therapeutic strategies is a worldwide goal in this research field and engineered probiotics could potentially provide a viable solution. This review aims at describing the proceeding of bacterial engineering and how genetically modified probiotics may represent a promising new biotechnological approach in IBD treatment

    Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line

    Get PDF
    Given the abundancy of angiotensin converting enzyme 2 (ACE-2) receptors density, beyond the lung, the intestine is considered as an alternative site of infection and replication for severe acute respiratory syndrome by coronavirus type 2 (SARS-CoV-2). Cannabidiol (CBD) has recently been proposed in the management of coronavirus disease 2019 (COVID-19) respiratory symptoms because of its anti-inflammatory and immunomodulatory activity exerted in the lung. In this study, we demonstrated the in vitro PPAR-γ-dependent efficacy of CBD (10−9-10−7 M) in preventing epithelial damage and hyperinflammatory response triggered by SARS-CoV-2 spike protein (SP) in a Caco-2 cells. Immunoblot analysis revealed that CBD was able to reduce all the analyzed proinflammatory markers triggered by SP incubation, such as tool-like receptor 4 (TLR-4), ACE-2, family members of Ras homologues A-GTPase (RhoA-GTPase), inflammasome complex (NLRP3), and Caspase-1. CBD caused a parallel inhibition of interleukin 1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), and IL-18 by enzyme-linked immunosorbent assay (ELISA) assay. By immunofluorescence analysis, we observed increased expression of tight-junction proteins and restoration of transepithelial electrical resistance (TEER) following CBD treatment, as well as the rescue of fluorescein isothiocyanate (FITC)–dextran permeability induced by SP. Our data indicate, in conclusion, that CBD is a powerful inhibitor of SP protein enterotoxicity in vitro

    Ultramicronized palmitoylethanolamide inhibits NLRP3 inflammasome expression and pro-inflammatory response activated by SARS-CoV-2 spike protein in cultured murine alveolar macrophages

    Get PDF
    Despite its possible therapeutic potential against COVID-19, the exact mechanism(s) by which palmitoylethanolamide (PEA) exerts its beneficial activity is still unclear. PEA has demonstrated analgesic, anti-allergic, and anti-inflammatory activities. Most of the anti-inflammatory properties of PEA arise from its ability to antagonize nuclear factor-κB (NF-κB) signalling pathway via the selective activation of the PPARα receptors. Acting at this site, PEA can downstream several genes involved in the inflammatory response, including cytokines (TNF-α, Il-1β) and other signal mediators, such as inducible nitric oxide synthase (iNOS) and COX2. To shed light on this, we tested the anti-inflammatory and immunomodulatory activity of ultramicronized(um)-PEA, both alone and in the presence of specific peroxisome proliferator-activated receptor alpha (PPAR-α) antagonist MK886, in primary cultures of murine alveolar macrophages exposed to SARS-CoV-2 spike glycoprotein (SP). SP challenge caused a significant concentration-dependent increase in proinflammatory markers (TLR4, p-p38 MAPK, NF-κB) paralleled to a marked upregulation of inflammasome-dependent inflammatory pathways (NLRP3, Caspase-1) with IL-6, IL-1β, TNF-α over-release, compared to vehicle group. We also observed a significant concentration-dependent increase in ACE-2 following SP challenge. um-PEA concentration-dependently reduced all the analyzed proinflammatory markers fostering a parallel downregulation of ACE-2. Our data show for the first time that um-PEA, via PPAR-α, markedly inhibits the SP induced NLRP3 signalling pathway outlining a novel mechanism of action of this lipid against COVID-19

    Sleeve Gastrectomy-Induced Body Mass Index Reduction Increases the Intensity of Taste Perception’s and Reduces Bitter-Induced Pleasantness in Severe Obesity

    Get PDF
    Background: The sense of taste is involved in food behavior and may drive food choices, likely contributing to obesity. Differences in taste preferences have been reported in normal-weight as compared to obese subjects. Changes in taste perception with an increased sweet-induced sensitivity have been reported in surgically treated obese patients, but data regarding the perception of basic tastes yielded conflicting results. We aimed to evaluate basic taste identification, induced perception, and pleasantness in normal-weight controls and obese subjects before and after bariatric surgery. Methods: Severe obese and matched normal weight subjects underwent a standardized spit test to evaluate sweet, bitter, salty, umami, and sour taste identification, induced perception, and pleasant-ness. A subset of obese subjects were also studied before and 12 months after sleeve gastrectomy. Results: No significant differences in basic taste-induced perceptions were observed, although a higher number of controls correctly identified umami than did obese subjects. Sleeve-gastrectomy-induced weight loss did not affect the overall ability to correctly identify basic tastes but was associated with a significant increase in taste intensities, with higher scores for sour and bitter, and a significantly reduced bitter-induced pleasantness. Conclusions: The perception of basic tastes is similar in normal-weight and severely obese subjects. Sleeve-gastrectomy-induced weight loss significantly increases basic taste-induced intensity, and selectively reduces bitter-related pleasantness without affecting the ability to identify the tastes. Our findings reveal that taste perception is influenced by body mass index changes, likely supporting the hypothesis that centrally mediated mechanisms modulate taste perception in severe obesity
    corecore