3 research outputs found

    Stereo Laryngoscopic Impact Site Prediction for Droplet-Based Stimulation of the Laryngeal Adductor Reflex

    Get PDF
    The laryngeal adductor reflex (LAR) is a vital reflex of the human larynx. LAR malfunctions may cause life-threatening aspiration events. An objective, noninvasive, and reproducible method for LAR assessment is still lacking. Stimulation of the larynx by droplet impact, termed Microdroplet Impulse Testing of the LAR (MIT-LAR), may remedy this situation. However, droplet instability and imprecise stimulus application thus far prevented MIT-LAR from gaining clinical relevance. We present a system comprising two alternative, custom-built stereo laryngoscopes, each offering a distinct set of properties, a droplet applicator module, and image/point cloud processing algorithms to enable a targeted, droplet-based LAR stimulation. Droplet impact site prediction (ISP) is achieved by droplet trajectory identification and spatial target reconstruction. The reconstruction and ISP accuracies were experimentally evaluated. Global spatial reconstruction errors at the glottal area of (0.3±0.3) mm and (0.4±0.3) mm and global ISP errors of (0.9±0.6) mm and (1.3±0.8) mm were found for a rod lens-based and an alternative, fiberoptic laryngoscope, respectively. In the case of the rod lens-based system, 96% of all observed ISP error values are inferior to 2 mm; a value of 80% was found with the fiberoptic assembly. This contribution represents an important step towards introducing a reproducible and objective LAR screening method into the clinical routine

    Ultrasound-guided lymph node fine-needle aspiration for evaluating post-vaccination germinal center responses in humans

    No full text
    Summary: The lymph node (LN) is a critical biological site for immune maturation after vaccination as it includes several cell populations critical for priming the antibody response. Here, we present a protocol for sampling the LN and isolating cell populations to evaluate immunogens targeting germline cells. We describe steps for media and tube preparation and sample collection using an ultrasound-guided LN fine-needle aspiration procedure. This protocol is safe, quick, low-cost, and less invasive than excisional biopsy.For complete details on the use and execution of this protocol, please refer to Leggat et al. (2022).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    BEDMAP3 - Ice thickness, bed and surface elevation for Antarctica - standardised data points

    No full text
    We present here the Bedmap3 ice thickness, bed and surface elevation standardised CSV data points that are used to create the Bedmap3 gridding products in addition to the previous data releases. The data consists of 50 million points acquired by 17 different data providers in Antarctica. The associated datasets consist of: - Bedmap1 standardised CSV data points: https://doi.org/10.5285/f64815ec-4077-4432-9f55-0ce230f46029 - Bedmap2 standardised CSV data points: https://doi.org/10.5285/2fd95199-365e-4da1-ae26-3b6d48b3e6ac - Bedmap3 statistically-summarised data points (shapefiles): https://doi.org/10.5285/a72a50c6-a829-4e12-9f9a-5a683a1acc4a This work is supported by the SCAR Bedmap project and the British Antarctic Survey's core programme: National Capability - Polar Expertise Supporting UK Researc
    corecore