38 research outputs found
Advances in Smart Materials and Applications
This is one of a series of special issues published in Advances
in Materials Science and Engineering, focusing on the latest
advances of smart materials and their applications.
Evolution of engineering materials is strongly depending
on the growing transformation of complexity in engineering
products. New materials being designed are required to provide
specific properties and demonstrate certain functional
characteristics by manipulating their dimension, chemistry,
and structure through various advanced technologies.Therefore,
“smartness” of a material has become the topic of interest.
Properties of smart materials may change accordingly to
the applied external stimuli.
Under the direction of the editorial team, we showcase
advances of organic and inorganic based smart materials
and their applications in areas of specific interest such as
energy, environment, and health. A total of 9 articles are
published in this special issue. Six articles are focused on
production, synthesis, and optimization of smart materials;
and the remaining are dedicated to application of smart
materials
Recommended from our members
Icing mitigation by mems-fabricated surface dielectric barrier discharge
Avoiding ice accumulation on aerodynamic components is of enormous importance to flight safety. Novel approaches utilizing surface dielectric barrier discharges (SDBDs) are expected to be more efficient and effective than conventional solutions for preventing ice accretion on aerodynamic components. In this work, the realization of SDBDs based on thin-film substrates by means of micro-electro-mechanical-systems (MEMS) technology is presented. The anti-icing performance of the MEMS SDBDs is presented and compared to SDBDs manufactured by printed circuit board (PCB) technology. It was observed that the 35 µm thick electrodes of the PCB SDBDs favor surface icing with an initial accumulation of supercooled water droplets at the electrode impact edges. This effect was not observed for 0.3 µm thick MEMS-fabricated electrodes indicating a clear advantage for MEMS-technology SDBDs for anti-icing applications. Titanium was identified as the most suitable material for MEMS electrodes. In addition, an optimization of the MEMS-SDBDs with respect to the dielectric materials as well as SDBD design is discussed
Real-time estimation of EEG-based engagement in different tasks
: Objective.Recent trends in brain-computer interface (BCI) research concern the passive monitoring of brain activity, which aim to monitor a wide variety of cognitive states. Engagement is such a cognitive state, which is of interest in contexts such as learning, entertainment or rehabilitation. This study proposes a novel approach for real-time estimation of engagement during different tasks using electroencephalography (EEG).Approach.Twenty-three healthy subjects participated in the BCI experiment. A modified version of the d2 test was used to elicit engagement. Within-subject classification models which discriminate between engaging and resting states were trained based on EEG recorded during a d2 test based paradigm. The EEG was recorded using eight electrodes and the classification model was based on filter-bank common spatial patterns and a linear discriminant analysis. The classification models were evaluated in cross-task applications, namely when playing Tetris at different speeds (i.e. slow, medium, fast) and when watching two videos (i.e. advertisement and landscape video). Additionally, subjects' perceived engagement was quantified using a questionnaire.Main results.The models achieved a classification accuracy of 90% on average when tested on an independent d2 test paradigm recording. Subjects' perceived and estimated engagement were found to be greater during the advertisement compared to the landscape video (p= 0.025 andp<0.001, respectively); greater during medium and fast compared to slow Tetris speed (p<0.001, respectively); not different between medium and fast Tetris speeds. Additionally, a common linear relationship was observed for perceived and estimated engagement (rrm= 0.44,p<0.001). Finally, theta and alpha band powers were investigated, which respectively increased and decreased during more engaging states.Significance.This study proposes a task-specific EEG engagement estimation model with cross-task capabilities, offering a framework for real-world applications
Professor Karl Komorzynski : Nachruf
vom Directo
Zur Reform des Gesangunterrichtes an den österreichischen Mittelschulen : Vortrag, geh. auf dem 1. österr. musikpädagog. Kongresse zu Wien, am 21. April 1911
von Regierungsrat Dr. Rupert Schreine
Programm des K. Human. Gymnasiums Straubing : für das Schuljahr ... / Seneca quomodo in tragoediis usus sit exemplaribus Graecis
scripsit R. SchreinerErschienen: 1.190
PURIFICATION AND PROPERTIES OF AN ADENOSINETRIPHOSPHATASE
Abstract not availabl
Miniaturized Plasma Actuator Flow Measurements by MEMS-Based Thermal Conductivity Sensors
The gasflow created by a minaturized dielectric barrier discharge (DBD) plasma actuator is measured by a MEMS-based thermal conductivity gas sensor giving an indication of flow velocity and flow direction. The possiblity of several sensors in a small area gives a far better accuracy of local flow phenomena compared to conventional sensors. This is important for a better understanding of plasma- induced flow characteristics
Field emission characterization of in-situ deposited metallic nanocones
An in-situ fabrication technique based on ion track etched template electrodeposition of metallic nanocones was used for the production of field emitter cathodes. Gold nanocones with a height of 24 microns, a base diameter between 3 to 4 microns and a tip diameter below 300 nanometers were deposited on a circular electrode with a diameter of 2.5 mm. The integral field emission (FE) measurements of samples with cone densities of 6 · 10^4 cones/cm2 (sample A) and 1 · 10^6 cones/cm2 (sample B) yielded in a maximum current of 37.5 μA at an applied field of 12.5 V/μm for sample A and 29.1 μA at 9.4 V/μm for sample B. The stability of emission current was investigated for over 48 hours and no degradation was observed
Innovatives Verfahren zur Herstellung und Integration metallischer Nanokonen für die Feldemission
In den letzten Jahren wurde am Institut für Elektromechanische Konstruktionen die Fabrikation und Integration von metallischen Nanodrähten und Nanokonen mittels Template-basierter Abscheidung erforscht. Diese Variante der in-situ Abscheidung von metallischen Nanostrukturen bietet eine Vielzahl von Anwendungsmöglichkeiten. Im Rahmen dieses Beitrags werden das Herstellungsverfahren zur Herstellung metallischer Nanokonen vorgestellt. Dies beinhaltet sowohl
die Templatepräparation mittels asymmetrischen Ätzens als auch die anschließende Integration mittels galvanischer Abscheidung. Eine Anwendung der metallischen Nanokonen stellt die Verwendung als Feldemitter in der Vakuumelektronikdar. Es werden erste Messungen der Langzeitstabilität des Feldemissionsstromes der metallischen Konen präsentiert