2 research outputs found

    Service scheduling to minimise the risk of missing appointments

    Get PDF
    © 2017 IEEE. This paper introduces the risk minimisation objective in the Stochastic Vehicle Routing Problem (SVRP). In the studied variant of SVRP, technicians drive to customer sites to provide service. The service times and travel times are stochastic, and a time window is required for the start of the service for each customer. Most previous research uses a chance-constrained approach to the problem. Some consider the probability of journey duration exceeding the threshold of the driver's workload while others set restrictions on the probability of individual time window constraints being violated. Their objectives are related to traditional routing costs whilst a different approach was taken in this paper. The risk of missing a task is defined as the probability that the technician assigned to the task arrives at the customer site later than the time window. The problem studied in this paper is to generate a schedule that minimises the maximum risk and sum of risks of the tasks. The duration of each task may be considered as following a known normal distribution. However the distribution of the start time of the service at a customer site will not be normally distributed due to time window constraints. Therefore a multiple integral expression of the risk was derived, and this expression works whether task distribution is normal or not. Additionally a deterministic heuristic searching method was applied to solve the problem. Experiments are carried out to test the method. Results of this work have been applied to an industrial case of SVRP where field engineering individuals drive to customer sites to provide time-constrained services. This original approach allows organisations to pay more attention to increasing customer satisfaction and become more competitive in the market

    Decision support system for green real-life field scheduling problems

    Get PDF
    © Springer International Publishing AG 2017. A decision support system is designed in this paper for supporting the adoption of green logistics within scheduling problems, and applied to real-life services cases. In comparison to other green logistics models, this system deploys time-varying travel speeds instead of a constant speed, which is important for calculating the CO 2 emission accurately. This system adopts widely used instantaneous emission models in literature which can predict second-by-second emissions. The factors influencing emissions in these models are vehicle types, vehicle load and traffic conditions. As vehicle types play an important role in computing the amount of emissions, engineers’ vehicles’ number plates are mapped to specified emission formulas. This feature currently is not offered by any commercial software. To visualise the emissions of a planned route, a Heat Map view is proposed. Furthermore, the differences between minimising CO 2 emission compared to minimising travel time are discussed under different scenarios. The field scheduling problem is formulated as a vehicle routing and scheduling problem, which considers CO 2 emissions in the objective function, heterogeneous fleet, time window constraints and skill matching constraints, different from the traditional time-dependent VSRP formulation. In the scheduler, this problem is solved by metaheuristic methods. Three different metaheuristics are compared. They are Tabu search algorithms with random neighbourhood generators and two variants of Variable Neighbourhood search algorithms: variable neighbourhood descent (VND) and reduced variable neighbourhood search (RVNS). Results suggest that RVNS is a good trade-off between solution qualities and computational time for industrial application
    corecore