2 research outputs found
Quantile mapping bias correction on Rossby Centre Regional Climate Models for precipitation analysis over Kenya, East Africa
This study uses the quantile mapping bias correction (QMBC) method to correct the bias in five regional climate models (RCMs) from the latest output of the Rossby Center Climate Regional Model (RCA4) over Kenya. The outputs were validated using various scalar metrics such as root-mean-square difference (RMSD), mean absolute error (MAE), and mean bias. The study found that the QMBC algorithm demonstrates varying performance among the models in the study domain. The results show that most of the models exhibit reasonable improvement after corrections at seasonal and annual timescales. Specifically, the European Community Earth-System (EC-EARTH) and Commonwealth Scientific and Industrial Research Organization (CSIRO) models depict remarkable
improvement as compared to other models. On the contrary, the Institute Pierre Simon Laplace Model CM5A-MR (IPSL-CM5A-MR) model shows little improvement across the rainfall seasons (i.e., March–May (MAM) and October–December (OND)). The projections forced with bias-corrected historical simulations tallied observed values demonstrate satisfactory simulations as compared to
the uncorrected RCMs output models. This study has demonstrated that using QMBC on outputs from RCA4 is an important intermediate step to improve climate data before performing any regional impact analysis. The corrected models may be used in projections of drought and flood extreme events over the study area
Assessing Past Climate Biases and the Added Value of CORDEX-CORE Precipitation Simulations over Africa
The present study investigates the skills of CORDEX-CORE precipitation outputs in simulating Africa’s key seasonal climate features, emphasizing the added value (AV) of the dynamical downscaling approach from which they were derived. The results indicate the models’ good skills in capturing African rainfall patterns and dynamics at satellite-based observation resolutions, with up to 65.17% significant positive AV spatial coverage for the CCLM5 model and up to 55.47% significant positive AV spatial coverage for the REMO model. Unavoidable biases are however present in rainfall-abundant areas and are reflected in the AV results, but vary based on the season, the sub-area, and the Global Climate Model–Regional Climate Models (GCM-RCM) combination considered. The RCMs’ ensemble mean generally performs better than individual GCM–RCM simulations. A further analysis of the GCM–RCM model chain indicates a strong influence of the dynamical downscaling approach on the driving GCMs. However, exceptions are found in some seasons for specific RCMs’ outputs, where GCMs are influential. The findings also revealed that observational uncertainties can influence AV and contribute to a 6 to 34% difference in significant positive AV spatial coverage results. An analysis of these results suggests that the AV by CORDEX-CORE simulations over Africa depend on how well the GCM physics are integrated to those of the RCMs and how these features are accommodated in the high-resolution setting of the downscaling experiments. The deficiencies of the CORDEX-CORE simulations could be related to how well key processes are represented within the RCM models. For Africa, these results show that CORDEX-CORE products could be adequate for a wide range of high-resolution precipitation data applications