43 research outputs found

    Lyapunov Functions in Piecewise Linear Systems: From Fixed Point to Limit Cycle

    Full text link
    This paper provides a first example of constructing Lyapunov functions in a class of piecewise linear systems with limit cycles. The method of construction helps analyze and control complex oscillating systems through novel geometric means. Special attention is stressed upon a problem not formerly solved: to impose consistent boundary conditions on the Lyapunov function in each linear region. By successfully solving the problem, the authors construct continuous Lyapunov functions in the whole state space. It is further demonstrated that the Lyapunov functions constructed explain for the different bifurcations leading to the emergence of limit cycle oscillation

    Force-Guided High-Precision Grasping Control of Fragile and Deformable Objects Using sEMG-Based Force Prediction

    Get PDF
    Regulating contact forces with high precision is crucial for grasping and manipulating fragile or deformable objects. We aim to utilize the dexterity of human hands to regulate the contact forces for robotic hands and exploit human sensory-motor synergies in a wearable and non-invasive way. We extracted force information from the electric activities of skeletal muscles during their voluntary contractions through surface electromyography (sEMG). We built a regression model based on a Neural Network to predict the gripping force from the preprocessed sEMG signals and achieved high accuracy (R2 = 0.982). Based on the force command predicted from human muscles, we developed a force-guided control framework, where force control was realized via an admittance controller that tracked the predicted gripping force reference to grasp delicate and deformable objects. We demonstrated the effectiveness of the proposed method on a set of representative fragile and deformable objects from daily life, all of which were successfully grasped without any damage or deformation.Comment: 8 pages, 11 figures, to be published on IEEE Robotics and Automation Letters. For the attached video, see https://youtu.be/0AotKaWFJD
    corecore