35 research outputs found

    Structural characterization and antioxidant activity of processed polysaccharides PCP-F1 from Polygonatum cyrtonema Hua.

    Get PDF
    IntroductionPolygonatum cyrtonema Hua. (PC) is a traditional Chinese herb with a history of use in both food and medicine. For clinical use, processed PC pieces are most commonly used, while present research has focused on crude PC polysaccharides (PCPs).MethodsIn this study, a new polysaccharide, PCP-F1, with a molecular weight of 37.46 kDa, was separated from four-time processed PCPs by column chromatography and evaluated by antioxidant activity. It was composed of glucose, mannose, galactose, rhamnose, and galacturonic acid with a molar ratio of 3.5: 2.5: 1.3: 1.8: 0.8.Results and DiscussionThe methylation analysis and two-dimensional NMR measurement revealed that the configuration of PCP-F1 contained nine residues in the primary structural unit by the chain of →3)-α-D-Glcp, →2)-α-D-Glcp (6→, →1)-ꞵ-D-Glcp (2→, →2)-α-D-GalAp (3,4→, →1) -ꞵ-D-Manp (3→, →2)-α-D-Glcp (3→, branched for →3)-α-D-Glcp, →2)-ꞵ-D-Galp (4→, →1)-ꞵ-D-Glcp (2→, →2,4)-α-D-Manp (6→, →3)-α-L-Rhap (4→. Radical scavenging assays indicated that PCP-F1 could scavenge radicals with a high scavenging rate, suggesting PCP-F1 possesses good antioxidant activity. The study confirms the importance of processed PC and offers the potential for exploiting it as a functional food

    RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer

    Get PDF
    Ferroptosis is an iron-dependent, oxidative cell death, and is characterized by iron-dependent accumulation of reactive oxygen species (ROS) within the cell. It has been implicated in various human diseases, including cancer. Recently, ferroptosis, as a non-apoptotic form of cell death, is emerging in specific cancer types; however, its relevance in colorectal cancer (CRC) is unexplored and remains unclear. Here, we showed that ferroptosis inducer RSL3 initiated cell death and ROS accumulation in HCT116, LoVo, and HT29 CRC cells over a 24 h time course. Furthermore, we found that ROS levels and transferrin expression were elevated in CRC cells treated with RSL3 accompanied by a decrease in the expression of glutathione peroxidase 4 (GPX4), indicating an iron-dependent cell death, ferroptosis. Overexpression GPX4 resulted in decreased cell death after RSL3 treatment. Therefore, RSL3 was able to induce ferroptosis on three different CRC cell lines in vitro in a dose- and time-dependent manner, which was due to increased ROS and an increase in the cellular labile iron pool. Moreover, this effect was able to be reversed by overexpression of GPX4. Taken together, our results suggest that the induction of ferroptosis contributed to RSL3-induced cell death in CRC cells and ferroptosis may be a pervasive and dynamic form of cell death for cancer treatment

    Sulfur dioxide exposure reduces the quantity of CD19+ cells and causes nasal epithelial injury in rats

    No full text
    Abstract Background Reactive airway dysfunction syndrome (RADS), also called irritant-induced asthma, is a type of occupational asthma that can occur within a very short period of latency. The study sought to investigate the influence of sulfur dioxide (SO2) exposure on CD19+ cells and nasal epithelial injury. Methods We investigated the effects of SO2 on CD19 expression and morphological changes of nasal epithelia in rats. In the study, 20 rats were randomly divided into the SO2 exposure group that were exposed to 600 ppm SO2, 2 h/day for consecutive 7 days, and the control group that were exposed to filtered air). Results Inhalation of high concentration of SO2significantly reduced CD19 expression at both the mRNA transcript and protein levels, and reduced the percentages of CD19+ cells and CD19+/CD23+ cells in the nasal septum. However, inhalation of high concentration of SO2 did not affect immunoglobulin (Ig) G, IgA and IgE levels in the serum and nasal septum. More importantly, SO2 exposure also caused mild structural changes of the nasal septum. Conclusion Our results reveal that inhalation of a high concentration of SO2 reduces CD19 expression and causes structural change of the nasal septum in rats

    Sub-surface stratification and dielectric permittivity distribution at the Chang’E-4 landing site revealed by the lunar penetrating radar

    No full text
    Context. In 2019, China’s Chang’E-4 (CE-4) probe landed on the far side of the Moon: a first in lunar exploration. The Lunar Penetrating Radar (LPR) mounted on the Yutu-2 rover allows the mapping of the near-surface structure and the dielectric permittivity of the landing area. The dielectric properties of the lunar soil affect the propagation of the LPR signals, which can be used to infer the depth of sub-surface boundaries and derive the composition of the component materials. Aims. Our objectives are to estimate the fine-resolution spatial distribution of relative permittivity and to improve the interpretation of the geological processes combined with the radargram of the CE-4 landing area. Methods. We used a modified method that combines the F-K migration and the minimum entropy of the ground penetrating radar (GPR) signals to estimate the velocity and permittivity values; this has the advantage of obtaining the appropriate velocity and permittivity, even with the incomplete or unnoticeable hyperbolic curves in the radar image Results. The sub-surface stratification of the CE-4 landing area is seen in the first 31 lunar days of the LPR data. A fine-resolution dielectric permittivity profile ranging from ~2.3 to ~6.3 is obtained with our method, and the actual depths of the observed prominent sub-surface interfaces are determined, giving a maximum average depth of ~38 m. The thickness of the regolith layer is in the range of ~5.7–15.6 m, with an average of 11.8 m. The permittivity of the near-surface regolith (<30 cm) is ~2.78 ± 0.01, the bulk density is 1.57 ± 0.01 g cm−3, which is close to the results of ~1.61 g cm−3 at the Apollo 15 landing area. The permittivity map is consistent with the radargram; the regolith and the paleo-regolith layer have relatively low permittivity and low echo strengths, while the rock debris has high permittivity and shows strong echos in the radargram. Two buried craters of different diameters beneath the navigation sites 4–11 and 16–31 are revealed in the radar profile. The permittivity distribution map can show detailed variations of material properties both inside and outside craters

    Up-regulated expression of substance P in CD8+ T cells and NK1R on monocytes of atopic dermatitis

    No full text
    Abstract Background Large numbers of CD8+ T cells were observed in atopic dermatitis (AD) skin, and monocytes from AD patients showed increased prostaglandin E2 production. However, little is known about the expression of substance P (SP) and its receptor NK1R in blood leukocytes of patients with AD. Objective To explore the expression of SP and NK1R in leukocytes of AD and the influence of allergens on SP and NK1R expression. Methods The expression levels of SP and NK1R in patients with AD were examined by flow cytometry, ELISA and a mouse AD model. Results The plasma SP level was 4.9-fold higher in patients with AD than in HC subjects. Both the percentage of SP expression in the population and mean fluorescence intensity (MFI) of SP expression were elevated in CD8+ T cells in the blood of AD patients. However, both the CD14+NK1R+ population and MFI of NK1R expression on CD14+ cells were enhanced in the blood of AD patients. Allergens ASWE, HDME and PPE failed to up-regulate SP expression in CD8+ T cells. However, allergens ASWE and HDME both enhanced NK1R expression on CD14+ blood leukocytes regardless of AD or HC subjects. OVA-sensitized AD mice showed an elevated proportion and MFI of SP-expressing CD8+ T cells in the blood, which agrees with the SP expression situation in human AD blood. Injection of SP into mouse skin did not up-regulate NK1R expression on monocytes. Conclusions An elevated plasma SP level, up-regulated expression of SP and NK1R indicate that the SP/NK1R complex is important in the development of AD. Therefore, SP and NK1R antagonist or blocker agents may help to treat patients with AD. Trial registration Registration number: ChiCTR-BOC-16010279; Registration date: Dec., 28, 2016; retrospectively registere

    Open Set Recognition for Malware Traffic via Predictive Uncertainty

    No full text
    Existing machine learning-based malware traffic recognition techniques can effectively detect abnormal behaviors in the network. However, almost all of them focus on a closed-set scenario in which the data used for training and testing come from the same label space. Since sophisticated malware and advanced persistent threats are evolving, it is impossible to exhaust all attacks to train a complete recognition model under the existing technical conditions. Therefore, recognition in the real network is an open-set problem, i.e., the recognition system should identify unknown and unseen attacks at test time. In this paper, we propose an uncertainty-aware method to identify known malicious traffic accurately and handle unknown traffic effectively. This method employs predictive uncertainty in deep learning as an indicator for unknown class detection. The predictive uncertainty represents the confidence in neural network predictions. In particular, the Deep Evidence Malware Traffic Recognition (DEMTR) model is presented to provide the multi-classification probability and predictive uncertainty in open-set scenarios using evidential deep learning. We demonstrate the performance of DEMTR on the MCFP dataset. Experimental results indicate that the proposed model outperforms the baseline methods in accuracy and F1-score

    An electrolyte-rich nano-organic cathode constructs an ultra-high voltage Zinc-ion battery

    No full text
    To realize green and sustainable energy storage systems, it is urgent to propose emerging strategies to construct and understand the relationship between electrode materials and electrolytes. Based on the strategy of storing the electrolyte in an organic cathode, we prepare a Zn2+-doped polyaniline (PAZ) nano-organic cathode with a re-doping method, which possesses high crystallinity in the (0 1 0) plane and high conductivity compared with conventional H+-doped polyaniline (PA). The resultant Zn//PAZ battery exhibits outstanding electrochemical performance for 3000 cycles at an ultra-high voltage of 2.4 V, attributed to the enhancement of electrolyte concentration and reduction of free water stemming from the dedoping of PAZ. A hybrid charge storage mechanism including Zn2+ and multi-anions insertion/extraction is also demonstrated for the Zn//PAZ batteries during the charge/discharge process. To further expand the practical applications of the strategy, we manufacture an electrolyte-free Zn//PAZ battery, which achieves acceptable performance for 400 cycles. This research provides insight into the relationship between the electrolyte and re-doped polyaniline organic cathode and opens a new avenue for emerging Zinc batteries

    gjSOX9 Cloning, Expression, and Comparison with gjSOXs Family Members in <i>Gekko japonicus</i>

    No full text
    SOX9 plays a crucial role in the male reproductive system, brain, and kidneys. In this study, we firstly analyzed the complete cDNA sequence and expression patterns for SOX9 from Gekko japonicus SOX9 (gjSOX9), carried out bioinformatic analyses of physiochemical properties, structure, and phylogenetic evolution, and compared these with other members of the gjSOX family. The results indicate that gjSOX9 cDNA comprises 1895 bp with a 1482 bp ORF encoding 494aa. gjSOX9 was not only expressed in various adult tissues but also exhibited a special spatiotemporal expression pattern in gonad tissues. gjSOX9 was predicted to be a hydrophilic nucleoprotein with a characteristic HMG-Box harboring a newly identified unique sequence, “YKYQPRRR”, only present in SOXE members. Among the 20 SOX9 orthologs, gjSOX9 shares the closest genetic relationships with Eublepharis macularius SOX9, Sphacrodactylus townsendi SOX9, and Hemicordylus capensis SOX9. gjSOX9 and gjSOX10 possessed identical physicochemical properties and subcellular locations and were tightly clustered with gjSOX8 in the SOXE group. Sixteen gjSOX family members were divided into six groups: SOXB, C, D, E, F, and H with gjSOX8, 9, and 10 in SOXE among 150 SOX homologs. Collectively, the available data in this study not only facilitate a deep exploration of the functions and molecular regulation mechanisms of the gjSOX9 and gjSOX families in G. japonicus but also contribute to basic research regarding the origin and evolution of SOX9 homologs or even sex-determination mode in reptiles

    Broadband Silicon Nitride Power Splitter Based on Bent Directional Couplers with Low Thermal Sensitivity

    No full text
    Directional couplers, as power splitters, have provided a significant contribution for light splitting and combining in silicon photonics. However, the splitting ratio of conventional directional couplers is very sensitive to wavelength, which limits the bandwidth and the transmission performance of the devices. In this work, a silicon nitride bent directional coupler with large bandwidth, large fabrication tolerance, and low thermal sensitivity is proposed and demonstrated through simulation analysis and experiments. Moreover, the fabrication process of 400 nm thick silicon nitride photonic devices is described, which are compatible with complementary metal–oxide–semiconductor technology. The 1 dB bandwidth of the bent waveguide coupler can reach 80 nm, and the thermal sensitivity is reduced by 85% compared to the silicon-based devices
    corecore