112 research outputs found
An Abnormal Network Flow Feature Sequence Prediction Approach for DDoS Attacks Detection in Big Data Environment
Distributed denial-of-service (DDoS) is a rapidly growing problem with the fast development of the Internet. There are multitude DDoS detection approaches, however, three major problems about DDoS attack detection appear in the big data environment. Firstly, to shorten the respond time of the DDoS attack detector; secondly, to reduce the required compute resources; lastly, to achieve a high detection rate with low false alarm rate. In the paper, we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and solve aforementioned problems. We define a network flow abnormal index as PDRA with the percentage of old IP addresses, the increment of the new IP addresses, the ratio of new IP addresses to the old IP addresses and average accessing rate of each new IP address. We design an IP address database using sequential storage model which has a constant time complexity. The autoregressive integrated moving average (ARIMA) trending prediction module will be started if and only if the number of continuous PDRA sequence value, which all exceed an PDRA abnormal threshold (PAT), reaches a certain preset threshold. And then calculate the probability that is the percentage of forecasting PDRA sequence value which exceed the PAT. Finally we identify the DDoS attack based on the abnormal probability of the forecasting PDRA sequence. Both theorem and experiment show that the method we proposed can effectively reduce the compute resources consumption, identify DDoS attack at its initial stage with higher detection rate and lower false alarm rate
CAEFL: composable and environment aware federated learning models
Federated Learning allows multiple distributed agents to contribute to a global machine learning model. Each agent trains locally and contributes to a global model by sending gradients to a central parameter server. The approach has some limitations: 1) some events may only occur in the local environment, so a global model may not perform as well as a specialized model; 2) changes in the local environment may require an agent to use some dedicated model, that is not available in a single global model; 3) a single global model approach is unable to derive new models from dealing with complex environments.
This paper proposes a novel federated learning approach, CAEFL, that is local environment aware and composes new dedicated models for new complex environments. CAEFL is implemented in Elixir to exploit transparent distribution, pattern matching, and hot-code-swapping. Pattern matching is used to transform environment sensors data to corresponding tags and aggregate data with the same environment tags on agents. It is also used on parameter server to match client’s push/pull request for these tagged models. It enables a declarative way for environment aware federated learning approach. CAEFL outperforms state of the art federated learning by 7-10% for the MNIST dataset and 2% for the FashionMNIST dataset in specific and complex environments
Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation
Recent advancements in Large Language Models (LLMs) have revolutionized
decision-making by breaking down complex problems into more manageable language
sequences referred to as ``thoughts''. An effective thought design should
consider three key perspectives: performance, efficiency, and flexibility.
However, existing thought can at most exhibit two of these attributes. To
address these limitations, we introduce a novel thought prompting approach
called ``Everything of Thoughts'' (XoT) to defy the law of ``Penrose triangle
of existing thought paradigms. XoT leverages pretrained reinforcement learning
and Monte Carlo Tree Search (MCTS) to incorporate external domain knowledge
into thoughts, thereby enhancing LLMs' capabilities and enabling them to
generalize to unseen problems efficiently. Through the utilization of the
MCTS-LLM collaborative thought revision framework, this approach autonomously
produces high-quality comprehensive cognitive mappings with minimal LLM
interactions. Additionally, XoT empowers LLMs to engage in unconstrained
thinking, allowing for flexible cognitive mappings for problems with multiple
solutions. We evaluate XoT on several challenging multi-solution
problem-solving tasks, including Game of 24, 8-Puzzle, and Pocket Cube. Our
results demonstrate that XoT significantly outperforms existing approaches.
Notably, XoT can yield multiple solutions with just one LLM call, showcasing
its remarkable proficiency in addressing complex problems across diverse
domains.Comment: 17 pages, 5 figure
TraceDiag: Adaptive, Interpretable, and Efficient Root Cause Analysis on Large-Scale Microservice Systems
Root Cause Analysis (RCA) is becoming increasingly crucial for ensuring the
reliability of microservice systems. However, performing RCA on modern
microservice systems can be challenging due to their large scale, as they
usually comprise hundreds of components, leading significant human effort. This
paper proposes TraceDiag, an end-to-end RCA framework that addresses the
challenges for large-scale microservice systems. It leverages reinforcement
learning to learn a pruning policy for the service dependency graph to
automatically eliminates redundant components, thereby significantly improving
the RCA efficiency. The learned pruning policy is interpretable and fully
adaptive to new RCA instances. With the pruned graph, a causal-based method can
be executed with high accuracy and efficiency. The proposed TraceDiag framework
is evaluated on real data traces collected from the Microsoft Exchange system,
and demonstrates superior performance compared to state-of-the-art RCA
approaches. Notably, TraceDiag has been integrated as a critical component in
the Microsoft M365 Exchange, resulting in a significant improvement in the
system's reliability and a considerable reduction in the human effort required
for RCA
The Altered Reconfiguration Pattern of Brain Modular Architecture Regulates Cognitive Function in Cerebral Small Vessel Disease
Background: Cerebral small vessel disease (SVD) is a common cause of cognitive dysfunction. However, little is known whether the altered reconfiguration pattern of brain modular architecture regulates cognitive dysfunction in SVD.Methods: We recruited 25 cases of SVD without cognitive impairment (SVD-NCI) and 24 cases of SVD with mild cognitive impairment (SVD-MCI). According to the Framingham Stroke Risk Profile, healthy controls (HC) were divided into 17 subjects (HC-low risk) and 19 subjects (HC-high risk). All individuals underwent resting-state functional magnetic resonance imaging and cognitive assessments. Graph-theoretical analysis was used to explore alterations in the modular organization of functional brain networks. Multiple regression and mediation analyses were performed to investigate the relationship between MRI markers, network metrics and cognitive performance.Results: We identified four modules corresponding to the default mode network (DMN), executive control network (ECN), sensorimotor network and visual network. With increasing vascular risk factors, the inter- and intranetwork compensation of the ECN and a relatively reserved DMN itself were observed in individuals at high risk for SVD. With declining cognitive ability, SVD-MCI showed a disrupted ECN intranetwork and increased DMN connection. Furthermore, the intermodule connectivity of the right inferior frontal gyrus of the ECN mediated the relationship between periventricular white matter hyperintensities and visuospatial processing in SVD-MCI.Conclusions: The reconfiguration pattern of the modular architecture within/between the DMN and ECN advances our understanding of the neural underpinning in response to vascular risk and SVD burden. These observations may provide novel insight into the underlying neural mechanism of SVD-related cognitive impairment and may serve as a potential non-invasive biomarker to predict and monitor disease progression
Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field
Inspired by insects in nature, an increasing number of soft robots have been proposed to mimic their locomotion patterns. As a wireless actuation method, the magnetic actuation technique has been widely applied to drive soft magnetic robots for diverse applications. Although recent works on soft materials have stimulated the development of soft robots, it is challenging to achieve the efficient movement of soft robots for in vivo biomedical application. Inspired by centipede locomotion, a soft octopodal robot is designed in this paper. The robot is fabricated by mixing magnetic particles with silicone polymers, which is then magnetized by a specific magnetic field. The prototypes can be actuated by an external magnetic field (5–8 mT) produced by custom-made electromagnetic coils. Experimental results show that the soft robot can move at a high speed in the range of 0.536–1.604 mm/s on different surfaces, including paper, wood, and PMMA. This indicates that the soft robot can achieve comparable speeds to other robots, while being driven by a lower magnitude, resulting in energy savings. Furthermore, it achieves a high speed of 0.823 mm/s on the surface of a pig colon. The fine capabilities of the soft robot in terms of crossing uneven biological surfaces and carrying external loads are demonstrated. The results indicate that the reported soft robot exhibits promising applications in the biomedical field
A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields
Riemann–Hilbert Method for the Three-Component Sasa–Satsuma Equation and Its N-Soliton Solutions
A DRDoS Detection and Defense Method Based on Deep Forest in the Big Data Environment
Distributed Denial of Service (DDoS) has developed multiple variants, one of which is Distributed Reflective Denial of Service (DRDoS). With the increasing number of Internet of Things (IoT) devices, the threat of DRDoS attack is growing, and the damage of a DRDoS attack is more destructive than other types. The existing DDoS detection methods cannot be generalized in DRDoS early detection, which leads to heavy load or degradation of service when deployed at the final point. In this paper, we propose a DRDoS detection and defense method based on deep forest model (DDDF), and then we integrate differentiated service into defense model to filter out DRDoS attack flow. Firstly, from the statistics perspective on different stages of DRDoS attack flow in the big data environment, we extract a host-based DRDoS threat index (HDTI) from the network flows. Secondly, using the HDTI feature we build a DRDoS detection and defense model based on the deep forest, which consists of 1 extreme gradient boost (XGBoost) forest estimator, 2 random forest estimators, and 2 extra random forest estimators in each layer. Lastly, the differentiated service procedure applies the detection result from DDDF to drop the traffic identified in different stages and different detection points. Theoretical analysis and experiments show that the method we proposed can effectively identify DRDoS attack with higher detection rate and a lower false alarm rate, the defense model also shows distinguishing ability to effectively eliminate the DRDoS attack flows, and dramatically mitigate the damage of a DRDoS attack
- …
