7 research outputs found
Diabetes mellitus may induce cardiovascular disease by decreasing neuroplasticity
Neuroplasticity has been defined “the ability of the
nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections”.
The nervous system monitors and coordinates internal organ function. Thus neuroplasticity may be associated with the pathogenesis of other diseases besides neuropsychiatric diseases. Decreased neuroplasticity is associated with cardiovascular disease (CVD) and a disease related to decreased neuroplasticity may confer a greater CVD risk. Diabetes mellitus (DM) is related to CVD and DM induces decreased neuroplasticity, which is manifested as depression, Alzheimer's disease and diabetic neuropathy. Therefore we conclude that DM may induce CVD by decreasing neuroplasticity
Lipidomics based on UHPLC/Q-TOF-MS to characterize lipid metabolic profiling in patients with newly diagnosed type 2 diabetes mellitus with dyslipidemia
Dyslipidemia often accompanies type 2 diabetes mellitus (T2DM). Elevated blood glucose in patients commonly leads to high levels of lipids. Lipid molecules can play a crucial role in early detection, treatment, and prognosis of T2DM with dyslipidemia. Previous lipid studies on T2DM mainly focused on Western diabetic populations with elevated blood glucose. In this research, we investigate both high blood sugar and high lipid levels to better understand changes in plasma lipid metabolism in newly diagnosed Chinese T2DM patients with dyslipidemia (NDDD). We used a plasma lipid analysis method based on ultra-high performance liquid chromatography coupled with mass spectrometry technology (UHPLC-MS) and statistical analysis to characterize lipid profiles and identify potential biomarkers in NDDD patients compared to healthy control (HC) subjects. Additionally, we examined the differences in lipid profiles between hyperlipidemia (HL) patients and HC subjects. We found significant changes in 15 and 23 lipid molecules, including lysophosphatidylcholine (LysoPC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and ceramide (Cer), in the NDDD and HL groups compared to the HC group. These altered lipid molecules are associated with five metabolic pathways, with sphingolipid metabolism and glycerophospholipid metabolism being the most relevant to glucose and lipid metabolism changes. These lipid biomarkers are strongly correlated with traditional markers of glucose and lipid metabolism. Notably, Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/16:1), SM(d18:1/24:1), and SM(d18:2/24:1) were identified as essential potential biomarkers closely linked to clinical parameters through synthetic analysis of receiver operating characteristic curves, random forest analysis, and Pearson matrix correlation. These lipid biomarkers can enhance the risk prediction for the development of T2DM in individuals with dyslipidemia but no clinical signs of high blood sugar. Furthermore, they offer insights into the pathological mechanisms of T2DM with dyslipidemia
Fluorinated‐Squaramide Covalent Organic Frameworks for High‐Performance and Interference‐Free Extraction of Synthetic Cannabinoids
Abstract Synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances (NPSs), have emerged as a significant public health threat in different regions worldwide. Analyzing SCs in water samples is critical to estimate their consumption and control. However, due to their low background concentration and the coexistence of complex matrix, the selective and effective enrichment of SCs is still challenging. In this study, a series of fluorinated‐squaramide‐based covalent organic frameworks (COF: FSQ‐2, FSQ‐3, and FSQ‐4) are synthesized, and the as‐prepared FSQ‐4 exhibits strong affinity to different SCs. The proper pore size (1.4 nm) and pre‐located functional groups (hydrogen‐bond donors, hydrogen‐bond acceptors, and fluorophilic segments) work synergistically for efficient SCs capture. Remarkably, when coupled FSQ‐4 with solid‐phase microextraction (SPME), trace‐level (part per trillion, 10−9) determination of 13 SCs can be easily achieved, representing one of the best results among NPS analyses, and the excellent extraction performance can be maintained under various interfering conditions
Surgical Pharmacy for Optimizing Medication Therapy Management Services within Enhanced Recovery after Surgery (ERAS<sup>®</sup>) Programs
Drug-related problems (DRPs) are common among surgical patients, especially older patients with polypharmacy and underlying diseases. DRPs can potentially lead to morbidity, mortality, and increased treatment costs. The enhanced recovery after surgery (ERAS) system has shown great advantages in managing surgical patients. Medication therapy management for surgical patients (established as “surgical pharmacy” by Guangdong Province Pharmaceutical Association (GDPA)) is an important part of the ERAS system. Improper medication therapy management can lead to serious consequences and even death. In order to reduce DRPs further, and promote the rapid recovery of surgical patients, the need for pharmacists in the ERAS program is even more pressing. However, the medication therapy management services of surgical pharmacy and how surgical pharmacists should participate in ERAS programs are still unclear worldwide. Therefore, this article reviews the main perioperative medical management strategies and precautions from several aspects, including antimicrobial agents, antithrombotic agents, pain medication, nutritional therapy, blood glucose monitoring, blood pressure treatment, fluid management, treatment of nausea and vomiting, and management of postoperative delirium. Additionally, the way surgical pharmacists participate in perioperative medication management, and the relevant medication pathways are explored for optimizing medication therapy management services within the ERAS programs. This study will greatly assist surgical pharmacists’ work, contributing to surgeons accepting that pharmacists have an important role in the multidisciplinary team, benefitting medical workers in treating, counseling, and advocating for their patients, and further improving the effectiveness, safety and economy of medication therapy for patients and promoting patient recovery